- -

Moving boundary transformation for American call options with transaction cost: finite difference methods and computing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Moving boundary transformation for American call options with transaction cost: finite difference methods and computing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Egorova, Vera es_ES
dc.contributor.author Tan, Shih-Hau es_ES
dc.contributor.author Lai, Choi-Hong es_ES
dc.contributor.author Company Rossi, Rafael es_ES
dc.contributor.author Jódar Sánchez, Lucas Antonio es_ES
dc.date.accessioned 2018-05-18T04:19:11Z
dc.date.available 2018-05-18T04:19:11Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0020-7160 es_ES
dc.identifier.uri http://hdl.handle.net/10251/102165
dc.description.abstract [EN] The pricing of American call option with transaction cost is a free boundary problem. Using a new transformation method the boundary is made to follow a certain known trajectory in time. The new transformed problem is solved by various finite difference methods, such as explicit and implicit schemes. Broyden s and Schubert s methods are applied as a modification to Newton s method in the case of nonlinearity in the equation. An alternating direction explicit method with second-order accuracy in time is used as an example in this paper to demonstrate the technique. Numerical results demonstrate the efficiency and the rate of convergence of the methods. es_ES
dc.description.sponsorship This work has been partially supported by the European Union in the FP7-PEOPLE-2012-ITN program under Grant Agreement Number 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance) and the Ministerio de Economia y Competitividad Spanish grant MTM2013-41765-P. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of Computer Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear PDE es_ES
dc.subject Free boundary es_ES
dc.subject Transformation es_ES
dc.subject Finite difference methods es_ES
dc.subject Newton-likemethod es_ES
dc.subject Alternating direction explicit method es_ES
dc.subject 60G40 es_ES
dc.subject 65N06 es_ES
dc.subject 65N12 es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Moving boundary transformation for American call options with transaction cost: finite difference methods and computing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00207160.2015.1108409 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/304617/EU/Novel Methods in Computational Finance/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Egorova, V.; Tan, S.; Lai, C.; Company Rossi, R.; Jódar Sánchez, LA. (2017). Moving boundary transformation for American call options with transaction cost: finite difference methods and computing. International Journal of Computer Mathematics. 94(2):345-362. https://doi.org/10.1080/00207160.2015.1108409 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00207160.2015.1108409 es_ES
dc.description.upvformatpinicio 345 es_ES
dc.description.upvformatpfin 362 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 94 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\312208 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Ankudinova, J., & Ehrhardt, M. (2008). On the numerical solution of nonlinear Black–Scholes equations. Computers & Mathematics with Applications, 56(3), 799-812. doi:10.1016/j.camwa.2008.02.005 es_ES
dc.description.references Avellaneda, M., Levy ∗, A., & ParÁS, A. (1995). Pricing and hedging derivative securities in markets with uncertain volatilities. Applied Mathematical Finance, 2(2), 73-88. doi:10.1080/13504869500000005 es_ES
dc.description.references Barles, G., & Soner, H. M. (1998). Option pricing with transaction costs and a nonlinear Black-Scholes equation. Finance and Stochastics, 2(4), 369-397. doi:10.1007/s007800050046 es_ES
dc.description.references Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81(3), 637-654. doi:10.1086/260062 es_ES
dc.description.references BOYLE, P. P., & VORST, T. (1992). Option Replication in Discrete Time with Transaction Costs. The Journal of Finance, 47(1), 271-293. doi:10.1111/j.1540-6261.1992.tb03986.x es_ES
dc.description.references Company, R., Navarro, E., Ramón Pintos, J., & Ponsoda, E. (2008). Numerical solution of linear and nonlinear Black–Scholes option pricing equations. Computers & Mathematics with Applications, 56(3), 813-821. doi:10.1016/j.camwa.2008.02.010 es_ES
dc.description.references Company, R., Jódar, L., & Pintos, J.-R. (2009). Consistent stable difference schemes for nonlinear Black-Scholes equations modelling option pricing with transaction costs. ESAIM: Mathematical Modelling and Numerical Analysis, 43(6), 1045-1061. doi:10.1051/m2an/2009014 es_ES
dc.description.references Company, R., Jódar, L., Ponsoda, E., & Ballester, C. (2010). Numerical analysis and simulation of option pricing problems modeling illiquid markets. Computers & Mathematics with Applications, 59(8), 2964-2975. doi:10.1016/j.camwa.2010.02.014 es_ES
dc.description.references Company, R., Egorova, V. N., & Jódar, L. (2016). Constructing positive reliable numerical solution for American call options: A new front-fixing approach. Journal of Computational and Applied Mathematics, 291, 422-431. doi:10.1016/j.cam.2014.09.013 es_ES
dc.description.references Dremkova, E., & Ehrhardt, M. (2011). A high-order compact method for nonlinear Black–Scholes option pricing equations of American options. International Journal of Computer Mathematics, 88(13), 2782-2797. doi:10.1080/00207160.2011.558574 es_ES
dc.description.references Düring, B., Fournié, M., & Jüngel, A. (2004). Convergence of a high-order compact finite difference scheme for a nonlinear Black–Scholes equation. ESAIM: Mathematical Modelling and Numerical Analysis, 38(2), 359-369. doi:10.1051/m2an:2004018 es_ES
dc.description.references Heider, P. (2010). Numerical Methods for Non-Linear Black–Scholes Equations. Applied Mathematical Finance, 17(1), 59-81. doi:10.1080/13504860903075670 es_ES
dc.description.references Hull, J., & White, A. (1990). Valuing Derivative Securities Using the Explicit Finite Difference Method. The Journal of Financial and Quantitative Analysis, 25(1), 87. doi:10.2307/2330889 es_ES
dc.description.references Jandačka, M., & Ševčovič, D. (2005). On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile. Journal of Applied Mathematics, 2005(3), 235-258. doi:10.1155/jam.2005.235 es_ES
dc.description.references Lai, C.-H. (1997). An application of quasi-Newton methods for the numerical solution of interface problems. Advances in Engineering Software, 28(5), 333-339. doi:10.1016/s0965-9978(97)00009-4 es_ES
dc.description.references Landau, H. G. (1950). Heat conduction in a melting solid. Quarterly of Applied Mathematics, 8(1), 81-94. doi:10.1090/qam/33441 es_ES
dc.description.references LELAND, H. E. (1985). Option Pricing and Replication with Transactions Costs. The Journal of Finance, 40(5), 1283-1301. doi:10.1111/j.1540-6261.1985.tb02383.x es_ES
dc.description.references Lesmana, D. C., & Wang, S. (2013). An upwind finite difference method for a nonlinear Black–Scholes equation governing European option valuation under transaction costs. Applied Mathematics and Computation, 219(16), 8811-8828. doi:10.1016/j.amc.2012.12.077 es_ES
dc.description.references Liu, G. R. (2002). Mesh Free Methods. doi:10.1201/9781420040586 es_ES
dc.description.references Marwil, E. (1979). Convergence Results for Schubert’s Method for Solving Sparse Nonlinear Equations. SIAM Journal on Numerical Analysis, 16(4), 588-604. doi:10.1137/0716044 es_ES
dc.description.references Nielsen, B. F., Skavhaug, O., & Tveito, A. (2002). Penalty and front-fixing methods for the numerical solution of American option problems. The Journal of Computational Finance, 5(4), 69-97. doi:10.21314/jcf.2002.084 es_ES
dc.description.references Pealat, G., & Duffy, D. J. (2011). The Alternating Direction Explicit (ADE) Method for One-Factor Problems. Wilmott, 2011(54), 54-60. doi:10.1002/wilm.10014 es_ES
dc.description.references Pooley, D. M. (2003). Numerical convergence properties of option pricing PDEs with uncertain volatility. IMA Journal of Numerical Analysis, 23(2), 241-267. doi:10.1093/imanum/23.2.241 es_ES
dc.description.references šEVČOVIČ, D. (2001). Analysis of the free boundary for the pricing of an American call option. European Journal of Applied Mathematics, 12(1), 25-37. doi:10.1017/s0956792501004338 es_ES
dc.description.references Sevcovic, D. (2008). Transformation Methods for Evaluating Approximations to the Optimal Exercise Boundary for Linear and Nonlinear Black-Scholes Equations. SSRN Electronic Journal. doi:10.2139/ssrn.1239078 es_ES
dc.description.references Wilmott, P., Howison, S., & Dewynne, J. (1995). The Mathematics of Financial Derivatives. doi:10.1017/cbo9780511812545 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem