Mostrar el registro sencillo del ítem
dc.contributor.author | Egorova, Vera | es_ES |
dc.contributor.author | Tan, Shih-Hau | es_ES |
dc.contributor.author | Lai, Choi-Hong | es_ES |
dc.contributor.author | Company Rossi, Rafael | es_ES |
dc.contributor.author | Jódar Sánchez, Lucas Antonio | es_ES |
dc.date.accessioned | 2018-05-18T04:19:11Z | |
dc.date.available | 2018-05-18T04:19:11Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0020-7160 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/102165 | |
dc.description.abstract | [EN] The pricing of American call option with transaction cost is a free boundary problem. Using a new transformation method the boundary is made to follow a certain known trajectory in time. The new transformed problem is solved by various finite difference methods, such as explicit and implicit schemes. Broyden s and Schubert s methods are applied as a modification to Newton s method in the case of nonlinearity in the equation. An alternating direction explicit method with second-order accuracy in time is used as an example in this paper to demonstrate the technique. Numerical results demonstrate the efficiency and the rate of convergence of the methods. | es_ES |
dc.description.sponsorship | This work has been partially supported by the European Union in the FP7-PEOPLE-2012-ITN program under Grant Agreement Number 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance) and the Ministerio de Economia y Competitividad Spanish grant MTM2013-41765-P. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | International Journal of Computer Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear PDE | es_ES |
dc.subject | Free boundary | es_ES |
dc.subject | Transformation | es_ES |
dc.subject | Finite difference methods | es_ES |
dc.subject | Newton-likemethod | es_ES |
dc.subject | Alternating direction explicit method | es_ES |
dc.subject | 60G40 | es_ES |
dc.subject | 65N06 | es_ES |
dc.subject | 65N12 | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Moving boundary transformation for American call options with transaction cost: finite difference methods and computing | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00207160.2015.1108409 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/304617/EU/Novel Methods in Computational Finance/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Egorova, V.; Tan, S.; Lai, C.; Company Rossi, R.; Jódar Sánchez, LA. (2017). Moving boundary transformation for American call options with transaction cost: finite difference methods and computing. International Journal of Computer Mathematics. 94(2):345-362. https://doi.org/10.1080/00207160.2015.1108409 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/00207160.2015.1108409 | es_ES |
dc.description.upvformatpinicio | 345 | es_ES |
dc.description.upvformatpfin | 362 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 94 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\312208 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Ankudinova, J., & Ehrhardt, M. (2008). On the numerical solution of nonlinear Black–Scholes equations. Computers & Mathematics with Applications, 56(3), 799-812. doi:10.1016/j.camwa.2008.02.005 | es_ES |
dc.description.references | Avellaneda, M., Levy ∗, A., & ParÁS, A. (1995). Pricing and hedging derivative securities in markets with uncertain volatilities. Applied Mathematical Finance, 2(2), 73-88. doi:10.1080/13504869500000005 | es_ES |
dc.description.references | Barles, G., & Soner, H. M. (1998). Option pricing with transaction costs and a nonlinear Black-Scholes equation. Finance and Stochastics, 2(4), 369-397. doi:10.1007/s007800050046 | es_ES |
dc.description.references | Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81(3), 637-654. doi:10.1086/260062 | es_ES |
dc.description.references | BOYLE, P. P., & VORST, T. (1992). Option Replication in Discrete Time with Transaction Costs. The Journal of Finance, 47(1), 271-293. doi:10.1111/j.1540-6261.1992.tb03986.x | es_ES |
dc.description.references | Company, R., Navarro, E., Ramón Pintos, J., & Ponsoda, E. (2008). Numerical solution of linear and nonlinear Black–Scholes option pricing equations. Computers & Mathematics with Applications, 56(3), 813-821. doi:10.1016/j.camwa.2008.02.010 | es_ES |
dc.description.references | Company, R., Jódar, L., & Pintos, J.-R. (2009). Consistent stable difference schemes for nonlinear Black-Scholes equations modelling option pricing with transaction costs. ESAIM: Mathematical Modelling and Numerical Analysis, 43(6), 1045-1061. doi:10.1051/m2an/2009014 | es_ES |
dc.description.references | Company, R., Jódar, L., Ponsoda, E., & Ballester, C. (2010). Numerical analysis and simulation of option pricing problems modeling illiquid markets. Computers & Mathematics with Applications, 59(8), 2964-2975. doi:10.1016/j.camwa.2010.02.014 | es_ES |
dc.description.references | Company, R., Egorova, V. N., & Jódar, L. (2016). Constructing positive reliable numerical solution for American call options: A new front-fixing approach. Journal of Computational and Applied Mathematics, 291, 422-431. doi:10.1016/j.cam.2014.09.013 | es_ES |
dc.description.references | Dremkova, E., & Ehrhardt, M. (2011). A high-order compact method for nonlinear Black–Scholes option pricing equations of American options. International Journal of Computer Mathematics, 88(13), 2782-2797. doi:10.1080/00207160.2011.558574 | es_ES |
dc.description.references | Düring, B., Fournié, M., & Jüngel, A. (2004). Convergence of a high-order compact finite difference scheme for a nonlinear Black–Scholes equation. ESAIM: Mathematical Modelling and Numerical Analysis, 38(2), 359-369. doi:10.1051/m2an:2004018 | es_ES |
dc.description.references | Heider, P. (2010). Numerical Methods for Non-Linear Black–Scholes Equations. Applied Mathematical Finance, 17(1), 59-81. doi:10.1080/13504860903075670 | es_ES |
dc.description.references | Hull, J., & White, A. (1990). Valuing Derivative Securities Using the Explicit Finite Difference Method. The Journal of Financial and Quantitative Analysis, 25(1), 87. doi:10.2307/2330889 | es_ES |
dc.description.references | Jandačka, M., & Ševčovič, D. (2005). On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile. Journal of Applied Mathematics, 2005(3), 235-258. doi:10.1155/jam.2005.235 | es_ES |
dc.description.references | Lai, C.-H. (1997). An application of quasi-Newton methods for the numerical solution of interface problems. Advances in Engineering Software, 28(5), 333-339. doi:10.1016/s0965-9978(97)00009-4 | es_ES |
dc.description.references | Landau, H. G. (1950). Heat conduction in a melting solid. Quarterly of Applied Mathematics, 8(1), 81-94. doi:10.1090/qam/33441 | es_ES |
dc.description.references | LELAND, H. E. (1985). Option Pricing and Replication with Transactions Costs. The Journal of Finance, 40(5), 1283-1301. doi:10.1111/j.1540-6261.1985.tb02383.x | es_ES |
dc.description.references | Lesmana, D. C., & Wang, S. (2013). An upwind finite difference method for a nonlinear Black–Scholes equation governing European option valuation under transaction costs. Applied Mathematics and Computation, 219(16), 8811-8828. doi:10.1016/j.amc.2012.12.077 | es_ES |
dc.description.references | Liu, G. R. (2002). Mesh Free Methods. doi:10.1201/9781420040586 | es_ES |
dc.description.references | Marwil, E. (1979). Convergence Results for Schubert’s Method for Solving Sparse Nonlinear Equations. SIAM Journal on Numerical Analysis, 16(4), 588-604. doi:10.1137/0716044 | es_ES |
dc.description.references | Nielsen, B. F., Skavhaug, O., & Tveito, A. (2002). Penalty and front-fixing methods for the numerical solution of American option problems. The Journal of Computational Finance, 5(4), 69-97. doi:10.21314/jcf.2002.084 | es_ES |
dc.description.references | Pealat, G., & Duffy, D. J. (2011). The Alternating Direction Explicit (ADE) Method for One-Factor Problems. Wilmott, 2011(54), 54-60. doi:10.1002/wilm.10014 | es_ES |
dc.description.references | Pooley, D. M. (2003). Numerical convergence properties of option pricing PDEs with uncertain volatility. IMA Journal of Numerical Analysis, 23(2), 241-267. doi:10.1093/imanum/23.2.241 | es_ES |
dc.description.references | šEVČOVIČ, D. (2001). Analysis of the free boundary for the pricing of an American call option. European Journal of Applied Mathematics, 12(1), 25-37. doi:10.1017/s0956792501004338 | es_ES |
dc.description.references | Sevcovic, D. (2008). Transformation Methods for Evaluating Approximations to the Optimal Exercise Boundary for Linear and Nonlinear Black-Scholes Equations. SSRN Electronic Journal. doi:10.2139/ssrn.1239078 | es_ES |
dc.description.references | Wilmott, P., Howison, S., & Dewynne, J. (1995). The Mathematics of Financial Derivatives. doi:10.1017/cbo9780511812545 | es_ES |