- -

Phytoplankton evolution during the creation of a biofloc system for shrimp culture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Phytoplankton evolution during the creation of a biofloc system for shrimp culture

Mostrar el registro completo del ítem

Llario-Sempere, F.; Rodilla, M.; Escrivá-Perales, J.; Falco, S.; Sebastiá-Frasquet, M. (2018). Phytoplankton evolution during the creation of a biofloc system for shrimp culture. International Journal of Environmental Science and Technology. 1-12. https://doi.org/10.1007/s13762-018-1655-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/102245

Ficheros en el ítem

Metadatos del ítem

Título: Phytoplankton evolution during the creation of a biofloc system for shrimp culture
Autor: Llario-Sempere, Ferran Rodilla, M Escrivá-Perales, Julia Falco, S. Sebastiá-Frasquet, M.-T.
Entidad UPV: Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Fecha de fin de embargo: 2019-02-22
Resumen:
[EN] Microalgae play a key role in the dynamics of biofloc technology aquaculture systems. Some phytoplankton groups, such as diatoms, are desired for their high nutritional value and contribution to water quality. Other ...[+]
Palabras clave: CHEMTAX , High-performance liquid chromatography , Litopenaeus vannamei , Pigments
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Environmental Science and Technology. (issn: 1735-1472 )
DOI: 10.1007/s13762-018-1655-5
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s13762-018-1655-5
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//ACIF%2F2014%2F244/
Agradecimientos:
Financial support for this research was provided by Conselleria d’Educació, Investigació, Cultura i Esport of the Generalitat Valenciana, through the program VALi+D, fle number ACIF/2014/244. We would like to express our ...[+]
Tipo: Artículo

References

Ahmed A, Kurian S, Gauns M, Chndrasekhararao AV, Mulla A, Naik B, Naik H, Naqvi SWA (2016) Spatial variability in phytoplankton community structure along the eastern Arabian Sea during the onset of south-west monsoon. Cont Shelf Res 119:30–39. https://doi.org/10.1016/j.csr.2016.03.005

Avnimelech Y (1999) Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 176:227–235. https://doi.org/10.1016/S0044-8486(99)00085-X

Avnimelech Y (2007) Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture 264:140–147. https://doi.org/10.1016/j.aquaculture.2006.11.025 [+]
Ahmed A, Kurian S, Gauns M, Chndrasekhararao AV, Mulla A, Naik B, Naik H, Naqvi SWA (2016) Spatial variability in phytoplankton community structure along the eastern Arabian Sea during the onset of south-west monsoon. Cont Shelf Res 119:30–39. https://doi.org/10.1016/j.csr.2016.03.005

Avnimelech Y (1999) Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 176:227–235. https://doi.org/10.1016/S0044-8486(99)00085-X

Avnimelech Y (2007) Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture 264:140–147. https://doi.org/10.1016/j.aquaculture.2006.11.025

Avnimelech Y (2009) Biofloc technology. A practical guide book. The World Aquaculture Society, Baton Rouge

Azim ME, Little DC (2008) The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283:29–35. https://doi.org/10.1016/j.aquaculture.2008.06.036

Ballester ELC, Abreu PC, Cavalli RO, Emerenciano M, de Abreu L, Wasielesky WJ (2010) Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquac Nutr 16:163–172. https://doi.org/10.1111/j.1365-2095.2009.00648.x

Baloi M, Arantes R, Schveitzer R, Magnotti C, Vinatea L (2013) Performance of Pacific white shrimp Litopenaeus vannamei raised in biofloc systems with varying levels of light exposure. Aquac Eng 52:39–44. https://doi.org/10.1016/j.aquaeng.2012.07.003

Baumgarten MGZ, Wallner-Kersanach M, Niencheski LFH (2010) Manual de análises em oceanografia química. Furg, Rio Grande

Becerra-Dórame MJ, Martínez-Córdova LR, Martínez-Porchas M, Lopez-Elías JA (2011) Evaluation of autotrophic and heterotrophic microcosm- based systems on the production response of Litopenaeus vannamei intensively nursed without Artemia and with zero water exchange. Isr J Aquac Bamidgeh 63:7

Brito LO, dos Santos IGS, de Abreu JL, de Araújo MT, Severi W, Gàlvez AO (2016) Effect of the addition of diatoms (Navicula spp.) and rotifers (Brachionus plicatilis) on water quality and growth of the Litopenaeus vannamei postlarvae reared in a biofloc system. Aquac Res 47:3990–3997. https://doi.org/10.1111/are.12849

Campa-Córdova AI, Núñez-Vázquez EJ, Luna-González A, Romero-Geraldo MJ, Ascencio F (2009) Superoxide dismutase activity in juvenile Litopenaeus vannamei and Nodipecten subnodosus exposed to the toxic dinoflagellate Prorocentrum lima. Comp Biochem Physiol C Toxicol Pharmacol 149:317–322. https://doi.org/10.1016/j.cbpc.2008.08.006

Casé M, Leça EE, Leitão SN, SantAnna EE, Schwamborn R, de Moraes Junior AT (2008) Plankton community as an indicator of water quality in tropical shrimp culture ponds. Mar Pollut Bull 56:1343–1352. https://doi.org/10.1016/j.marpolbul.2008.02.008

Chen YC (2001) Immobilized microalga Scenedesmus quadricauda (Chlorophyta, Chlorococcales) for long-term storage and for application for water quality control in fish culture. Aquaculture 195:71–80. https://doi.org/10.1016/S0044-8486(00)00540-8

Correia ES, Wilkenfeld JS, Morris TC, Wei L, Prangnell DI, Samocha TM (2014) Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquac Eng 59:48–54. https://doi.org/10.1016/j.aquaeng.2014.02.002

Duarte CM, Marrasé C, Vaqué D, Estrada M (1990) Counting error and the quantitative analysis of phytoplankton communities. J Plankton Res 12:295–304. https://doi.org/10.1093/plankt/12.2.295

Ebeling J, Timmons M, Bisogni J (2006) Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 257:346–358. https://doi.org/10.1016/j.aquaculture.2006.03.019

El-Dahhar AA, Salama M, Elebiary EH (2015) Effect of energy to protein ratio in biofloc technology on water quality, survival and growth of mullet (Mugil cephalus). J Arab Aquac Soc 10:15–32. https://doi.org/10.12816/0026633

Emerenciano MGC, Martínez-Córdova LR, Martínez-Porchas M, Miranda-Baeza A (2017) Biofloc technology (BFT): a tool for water quality management. In: Tutu H (ed) water quality. InTech, Rijeka. https://doi.org/10.5772/66416

Figueroa F, Niell F, Figueiras F, Villarino M (1998) Diel migration of phytoplankton and spectral light field in the Ria de Vigo (NW Spain). Mar Biol 130:491–499

Gaona CAP, Poersch LH, Krummenauer D, Foes GK, Wasielesky WJ (2011) The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. Int J Recirc Aquac. https://doi.org/10.21061/ijra.v12i1.1354

Garrido JL, Airs RL, Rodríguez F, Van Heukelem L, Zapata M (2011) New HPLC separation techniques. In: Roy S, Llewellyn CA, Egeland ES, Johnsen G (eds) Phytoplankton pigments: characterization, chemotaxonomy, and applications in oceanography. University Press, Cambridge, pp 165–194

Ge H, Li J, Chang Z, Chen P, Shen M, Zhao F (2016) Effect of microalgae with semicontinuous harvesting on water quality and zootechnical performance of white shrimp reared in the zero water exchange system. Aquac Eng 72–73:70–76. https://doi.org/10.1016/j.aquaeng.2016.04.006

Godoy LC, Odebrecht C, Ballester E, Martins TG, Wasielesky WJ (2012) Effect of diatom supplementation during the nursery rearing of Litopenaeus vannamei (Boone, 1931) in a heterotrophic culture system. Aquac Int 20:559–569. https://doi.org/10.1007/s10499-011-9485-1

Grasshoff K (1976) Methods of seawater analysis. Verlag Chemie: Weinstei, New York

Green BW, Schrader KK, Perschbacher PW (2014) Effect of stocking biomass on solids, phytoplankton communities, common off-flavors, and production parameters in a channel catfish biofloc technology production system. Aquac Res 45:1442–1458. https://doi.org/10.1111/are.12096

Gris B, Sforza E, Morosinotto T, Bertucco A, La Rocca N (2017) Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum. J Appl Phycol 29:1781–1790. https://doi.org/10.1007/s10811-017-1133-3

Higgins HW, Wright SW, Schlüter L (2011) Quantitative interpretation of chemotaxonomic pigment data. In: Roy S, Llewellyn CA, Egeland ES, Johnsen G (eds) Phytoplankton pigments: characterization, chemotaxonomy, and applications in oceanography. Cambridge University Press, Cambridge, pp 257–313

Hooker S, Firestone E, Claustre H, Ras J (2001) The first SeaWiFS HPLC analysis round-robin experiment (SeaHARRE-1). https://ntrs.nasa.gov/search.jsp?R=20010072242 . Accessed 19 July 2017

Horabun T (1997) Relationships between water quality and phytoplankton in the Bangpakong river. http://agris.fao.org/agris-search/search.do?recordID=TH2000001898 . Accessed 19 July 2017

Ismael AA (2003) Succession of heterotrophic and mixotrophic dinoflagellates as well as autotrophic microplankton in the harbour of Alexandria, Egypt. J Plankton Res 25:193–202. https://doi.org/10.1093/plankt/25.2.193

Jeffrey SW, Sielicki M, Haxo FT (1975) Chloroplast pigment patterns in dinoflagellates. J Phycol 11:374–384. https://doi.org/10.1111/j.1529-8817.1975.tb02799.x

Jeong HJ, Yoo YD, Kim JS, Seong KA, Kang NS, Kim TH (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45:65–91. https://doi.org/10.1007/s12601-010-0007-2

Jory DE, Cabrera TR, Dugger DM, Fegan D, Lee PG, Lawrence L, Jackson C, Mcintosh R, Castañeda J, International B, Park H, Hwy N, Pierce F (2001) A global review of shrimp feed management: status and perspectives. Aquaculture 318:104–152

Ju ZY, Forster I, Conquest L, Dominy W, Kuo WC, Horgen FD (2008) Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquac Res 39:118–133. https://doi.org/10.1111/j.1365-2109.2007.01856.x

Kingston MB (1999) Effect of light on vertical migration and photosynthesis of Euglena proxima (euglenophyta). J Phycol 35:245–253. https://doi.org/10.1046/j.1529-8817.1999.3520245.x

Latasa M, Scharek R, Vidal M, Vila-Reixach G (2010) Preferences of phytoplankton groups for waters of different trophic status in the northwestern Mediterranean Sea. Mar Ecol Prog Ser 40:27–42. https://doi.org/10.3354/meps08559

Li Y, Swift E, Buskey EJ (1996) Photoinhibition of mechanically stimulable bioluminescence in the heterotrophic dinoflagellate Protoperidinium depressum (pyrrophyta). J Phycol 32:974–982. https://doi.org/10.1111/j.0022-3646.1996.00974.x

Li A, Stoecker D, Adolf J (1999) Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum. Aquat Microb Ecol 19:163–176. https://doi.org/10.3354/ame019163

Lin YC, Chen JC (2001) Acute toxicity of ammonia on Litopenaeus vannamei (Boone) juveniles at different salinity levels. J Exp Mar Biol Ecol 259:109–119. https://doi.org/10.1016/S0022-0981(01)00227-1

Lin YC, Chen JC (2003) Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture 224:93–201. https://doi.org/10.1016/S0044-8486(03)00220-5

Lohscheider JN, Strittmatter M, Küpper H, Adamska I, Heaney S, Cunningham C (2011) Vertical distribution of epibenthic freshwater cyanobacterial Synechococcus spp. Strains depends on their ability for photoprotection. PLoS ONE. https://doi.org/10.1371/journal.pone.0020134

Lukwambe B, Qiuqian L, Wu J, Zhang D, Wang K, Zheng Z (2015) The effects of commercial microbial agents (probiotics) on phytoplankton community structure in intensive white shrimp (Litopenaeus vannamei) aquaculture ponds. Aquac Int 23:1443–1455. https://doi.org/10.1007/s10499-015-9895-6

Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283

Maicá PF, de Borba MR, Wasielesky WJ (2012) Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zero-water-exchange super-intensive system. Aquac Res 43:361–370. https://doi.org/10.1111/j.1365-2109.2011.02838.x

Manan H, Moh JHZ, Kasan NA, Suratman S, Ikhwanuddin M (2016) Identification of biofloc microscopic composition as the natural bioremediation in zero water exchange of Pacific white shrimp, Penaeus vannamei, culture in closed hatchery system. Appl Water Sci. https://doi.org/10.1007/s13201-016-0421-4

Marinho YF, Brito LO, Campos S, Severi W, Andrade HA, Galvez AO (2016) Effect of the addition of Chaetoceros calcitrans, Navicula sp. and Phaeodactylum tricornutum (diatoms) on phytoplankton composition and growth of Litopenaeus vannamei (Boone) postlarvae reared in a biofloc system. Aquac Res 48:4155–4164. https://doi.org/10.1111/are.13235

Martins TG, Odebrecht C, Jensen LV, D’Oca MG, Wasielesky WJ (2016) The contribution of diatoms to bioflocs lipid content and the performance of juvenile Litopenaeus vannamei (Boone, 1931) in a BFT culture system. Aquac Res 47:1315–1326. https://doi.org/10.1111/are.12592

Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

Natrah FMI, Bossier P, Sorgeloos P, Yusoff FM, Defoirdt T (2014) Significance of microalgal-bacterial interactions for aquaculture. Rev Aquac 6:48–61. https://doi.org/10.1111/raq.12024

Niemi G, Wardrop D, Brooks R, Anderson S, Brady V, Paerl H, Rakocinski C, Brouwer M, Levinson B, McDonald M (2004) Rationale for a new generation of indicators for coastal waters. Environ Health Perspect 112:979–986. https://doi.org/10.1289/ehp.6903

Paerl H, Tucker C (1995) Ecology of blue-green algae in aquaculture ponds. J World Aquac 26:109–131. https://doi.org/10.1111/j.1749-7345.1995.tb00235.x

Pérez-Linares J, Ochoa JL, GagoMartínez A (2008) Effect of PSP toxins in white leg shrimp Litopenaeus vannamei Boone, 1931. J Food Sci 73:T69–T73. https://doi.org/10.1111/j.1750-3841.2008.00710.x

Pérez-Morales A, Band-Schmidt CJ, Martínez-Díaz SF (2017) Mortality on zoea stage of the Pacific white shrimp Litopenaeus vannamei caused by Cochlodinium polykrikoides (Dinophyceae) and Chattonella spp. (Raphidophyceae). Mar Biol 164:57. https://doi.org/10.1007/s00227-017-3083-3

Ray AJ, Dillon KS, Lotz JM (2011) Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquac Eng 45:127–136. https://doi.org/10.1016/j.aquaeng.2011.09.001

Schlüter L, Lauridsen T, Krogh G (2006) Identification and quantification of phytoplankton groups in lakes using new pigment ratios–a comparison between pigment analysis by HPLC and microscopy. Freshwater 51:1474–1485. https://doi.org/10.1111/j.1365-2427.2006.01582.x/full

Schlüter L, Behl S, Striebel M, Stibor H (2016) Comparing microscopic counts and pigment analyses in 46 phytoplankton communities from lakes of different trophic state. Freshw Biol 61:1627–1639. https://doi.org/10.1111/fwb.12803

Schrader KK, Green BW, Perschbacher PW (2011) Development of phytoplankton communities and common off-flavors in a biofloc technology system used for the culture of channel catfish (Ictalurus punctatus). Aquac Eng 45:118–126. https://doi.org/10.1016/j.aquaeng.2011.08.004

Sebastiá M, Rodilla M (2013) Nutrient and phytoplankton analysis of a Mediterranean Coastal area. Environ Manage 51:225–240. https://doi.org/10.1007/s00267-012-9986-3

Sebastiá M, Rodilla M, Sanchis J, Altur V (2012) Influence of nutrient inputs from a wetland dominated by agriculture on the phytoplankton community in a shallow harbour at the Spanish Mediterranean coast. Agric Ecosyst Environ 152:10–20. https://doi.org/10.1016/j.agee.2012.02.006

Seoane S, Garmendia M, Revilla M, Borja Á, Franco J, Orive E, Valencia V (2011) Phytoplankton pigments and epifluorescence microscopy as tools for ecological status assessment in coastal and estuarine waters, within the Water Framework. Mar Pollut 62:1484–1497. https://doi.org/10.1016/j.marpolbul.2011.04.010

Sinden A, Sinang SC (2016) Cyanobacteria in aquaculture systems: linking the occurrence, abundance and toxicity with rising temperatures. Int J Environ Sci Technol 13:2855–2862. https://doi.org/10.1007/s13762-016-1112-2

Sospedra J, Niencheski LFH, Falco S, Andrade CF, Attisano KK, Rodilla M (2017) Identifying the main sources of silicate in coastal waters of the Southern Gulf of Valencia (Western Mediterranean Sea). Oceanologia. https://doi.org/10.1016/j.oceano.2017.07.004

Strickland J (1960) Measuring the production of marine phytoplankton. Bull Fish Res Bd Canada 122:172

Ter Braak CJF (1994) Canonical community ordination. Part I: basic theory and linear methods. Écoscience 1:127–140. https://doi.org/10.1080/11956860.1994.11682237

Ter Braak C, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). http://library.wur.nl/WebQuery/wurpubs/wever/341885 . Accessed 19 July 2017

Utermohl M (1985) Zur Vervollkommnung der quantitative Phytoplankton-Methodik. Limnologie 9:1–38

Van Wyk P, Scarpa J (1999) Water quality requirements and management. In: Institution Harbor Branch Oceanographic (ed) Farming marine shrimp in recirculating freshwater systems. Florida Department of Agriculture and Consumer Services, Florida, pp 128–138

Vinatea L, Gálvez AO, Browdy CL, Stokes A, Venero J, Haveman J, Lewis BL, Lawson A, Shuler A, Leffler JW (2010) Photosynthesis, water respiration and growth performance of Litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: interaction of water quality variables. Aquac Eng 42:17–24. https://doi.org/10.1016/j.aquaeng.2009.09.001

Wright S, Jeffrey S, Mantoura R (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser 77:186–196

Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21:127–133. https://doi.org/10.1007/s10811-008-9341-5

Yusoff FM, Zubaidah MS, Matias HB, Kwan TS (2002) Phytoplankton succession in intensive marine shrimp culture ponds treated with a commercial bacterial product. Aquac Res 33:269–278. https://doi.org/10.1046/j.1355-557x.2002.00671.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem