Mostrar el registro sencillo del ítem
dc.contributor.author | Muñoz Mas, Rafael | es_ES |
dc.contributor.author | Fukuda, Shinji | es_ES |
dc.contributor.author | Portolés, Javier | es_ES |
dc.contributor.author | Martinez-Capel, Francisco | es_ES |
dc.date.accessioned | 2018-05-19T04:20:56Z | |
dc.date.available | 2018-05-19T04:20:56Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1574-9541 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/102250 | |
dc.description.abstract | [EN] Probabilistic Neural Networks (PNNs) and Support Vector Machines (SVMs) are flexible classification techniques suited to render trustworthy species distribution and habitat suitability models. Although several alternatives to improve PNNs¿ reliability and performance and/or to reduce computational costs exist, PNNs are currently not well recognised as SVMs because the SVMs were compared with standard PNNs. To rule out this idea, the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus Doadrio & Carmona, 2006) was modelled with SVMs and four types of PNNs (homoscedastic, heteroscedastic, cluster and enhanced PNNs); all of them optimised with differential evolution. The fitness function and several performance criteria (correctly classified instances, true skill statistic, specificity and sensitivity) and partial dependence plots were used to assess respectively the performance and reliability of each habitat suitability model. Heteroscedastic and enhanced PNNs achieved the highest performance in every index but specificity. However, these two PNNs rendered ecologically unreliable partial dependence plots. Conversely, homoscedastic and cluster PNNs rendered ecologically reliable partial dependence plots. Thus, Eastern Iberian chub proved to be a eurytopic species, presenting the highest suitability in microhabitats with cover present, low flow velocity (approx. 0.3 m/s), intermediate depth (approx. 0.6 m) and fine gravel (64¿256 mm). PNNs outperformed SVMs; thus, based on the results of the cluster PNN, which also showed high values of the performance criteria, we would advocate a combination of approaches (e.g., cluster & heteroscedastic or cluster & enhanced PNNs) to balance the trade-off between accuracy and reliability of habitat suitability models. | es_ES |
dc.description.sponsorship | The study has been partially funded by the national Research project IMPADAPT (CGL2013-48424-C2-1-R) with MINECO (Spanish Ministry of Economy) and Feder funds and by the Confederacion Hidrografica del Near (Spanish Ministry of Agriculture and Fisheries, Food and Environment). This study was also supported in part by the University Research Administration Center of the Tokyo University of Agriculture and Technology. Thanks to Maria Jose Felipe for reviewing the mathematical notation and to the two anonymous reviewers who helped to improve the manuscript. | |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Ecological Informatics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Differential Evolution | es_ES |
dc.subject | Habitat suitability model | es_ES |
dc.subject | Iberian Peninsula | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Partial dependence plot | es_ES |
dc.subject | Species distribution model | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/J.ECOINF.2017.10.008 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2013-48424-C2-1-R/ES/ADAPTACION AL CAMBIO GLOBAL EN SISTEMAS DE RECURSOS HIDRICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Muñoz Mas, R.; Fukuda, S.; Portolés, J.; Martinez-Capel, F. (2018). Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus). Ecological Informatics. 43:24-37. https://doi.org/10.1016/J.ECOINF.2017.10.008 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/J.ECOINF.2017.10.008 | es_ES |
dc.description.upvformatpinicio | 24 | es_ES |
dc.description.upvformatpfin | 37 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.relation.pasarela | S\347881 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |