- -

Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz Mas, Rafael es_ES
dc.contributor.author Fukuda, Shinji es_ES
dc.contributor.author Portolés, Javier es_ES
dc.contributor.author Martinez-Capel, Francisco es_ES
dc.date.accessioned 2018-05-19T04:20:56Z
dc.date.available 2018-05-19T04:20:56Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1574-9541 es_ES
dc.identifier.uri http://hdl.handle.net/10251/102250
dc.description.abstract [EN] Probabilistic Neural Networks (PNNs) and Support Vector Machines (SVMs) are flexible classification techniques suited to render trustworthy species distribution and habitat suitability models. Although several alternatives to improve PNNs¿ reliability and performance and/or to reduce computational costs exist, PNNs are currently not well recognised as SVMs because the SVMs were compared with standard PNNs. To rule out this idea, the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus Doadrio & Carmona, 2006) was modelled with SVMs and four types of PNNs (homoscedastic, heteroscedastic, cluster and enhanced PNNs); all of them optimised with differential evolution. The fitness function and several performance criteria (correctly classified instances, true skill statistic, specificity and sensitivity) and partial dependence plots were used to assess respectively the performance and reliability of each habitat suitability model. Heteroscedastic and enhanced PNNs achieved the highest performance in every index but specificity. However, these two PNNs rendered ecologically unreliable partial dependence plots. Conversely, homoscedastic and cluster PNNs rendered ecologically reliable partial dependence plots. Thus, Eastern Iberian chub proved to be a eurytopic species, presenting the highest suitability in microhabitats with cover present, low flow velocity (approx. 0.3 m/s), intermediate depth (approx. 0.6 m) and fine gravel (64¿256 mm). PNNs outperformed SVMs; thus, based on the results of the cluster PNN, which also showed high values of the performance criteria, we would advocate a combination of approaches (e.g., cluster & heteroscedastic or cluster & enhanced PNNs) to balance the trade-off between accuracy and reliability of habitat suitability models. es_ES
dc.description.sponsorship The study has been partially funded by the national Research project IMPADAPT (CGL2013-48424-C2-1-R) with MINECO (Spanish Ministry of Economy) and Feder funds and by the Confederacion Hidrografica del Near (Spanish Ministry of Agriculture and Fisheries, Food and Environment). This study was also supported in part by the University Research Administration Center of the Tokyo University of Agriculture and Technology. Thanks to Maria Jose Felipe for reviewing the mathematical notation and to the two anonymous reviewers who helped to improve the manuscript.
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Ecological Informatics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Differential Evolution es_ES
dc.subject Habitat suitability model es_ES
dc.subject Iberian Peninsula es_ES
dc.subject Machine learning es_ES
dc.subject Partial dependence plot es_ES
dc.subject Species distribution model es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/J.ECOINF.2017.10.008 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2013-48424-C2-1-R/ES/ADAPTACION AL CAMBIO GLOBAL EN SISTEMAS DE RECURSOS HIDRICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Muñoz Mas, R.; Fukuda, S.; Portolés, J.; Martinez-Capel, F. (2018). Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus). Ecological Informatics. 43:24-37. https://doi.org/10.1016/J.ECOINF.2017.10.008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/J.ECOINF.2017.10.008 es_ES
dc.description.upvformatpinicio 24 es_ES
dc.description.upvformatpfin 37 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.relation.pasarela S\347881 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem