Mostrar el registro sencillo del ítem
dc.contributor.author | Torres Górriz, Benjamín![]() |
es_ES |
dc.contributor.author | Rinaudo, Paula![]() |
es_ES |
dc.contributor.author | Calderón García, Pedro Antonio![]() |
es_ES |
dc.date.accessioned | 2018-05-19T04:22:13Z | |
dc.date.available | 2018-05-19T04:22:13Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1475-1305 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/102254 | |
dc.description.abstract | [EN] Strain is a key parameter in laboratory and bridge load testing. The selection of a strain sensor depends on several factors, including the aim of the test and the specimen material. The application of the right sensor is vital to obtain accurate readings, especially in the case of heterogeneous materials such as concrete. This paper focuses on long‐gage and point fiber Bragg grating‐based strain sensors and their possible applications on concrete elements. First, strain sensors are described, after which long‐gage and point fiber Bragg grating strain sensors are compared in a concrete specimen test, a concrete column test and static and dynamic load tests on a concrete railway bridge. Results show that although it is advisable to use long‐gage sensors when monitoring heterogeneous materials, there are some particular cases were both sensors type can provide accurate strain measurements. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | STRAIN | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bridge load test | es_ES |
dc.subject | Fiber Bragg Grating | es_ES |
dc.subject | Fiber optic sensor | es_ES |
dc.subject | Long-gage sensor | es_ES |
dc.subject | Strain | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.title | Comparison between point and long-gage FBG-based strain sensors during a railway bridge load test | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/str.12230 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-08-01 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.description.bibliographicCitation | Torres Górriz, B.; Rinaudo, P.; Calderón García, PA. (2017). Comparison between point and long-gage FBG-based strain sensors during a railway bridge load test. STRAIN. 4:1-14. doi:10.1111/str.12230 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/str.12230 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.relation.pasarela | S\337145 | es_ES |
dc.description.references | Calderón, P. A., & Glisic, B. (2012). Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement. Measurement Science and Technology, 23(6), 065604. doi:10.1088/0957-0233/23/6/065604 | es_ES |
dc.description.references | Glišić, B., & Inaudi, D. (2007). Fibre Optic Methods for Structural Health Monitoring. doi:10.1002/9780470517819 | es_ES |
dc.description.references | Kissinger, T., Charrett, T. O. H., & Tatam, R. P. (2013). Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications. Measurement Science and Technology, 24(9), 094011. doi:10.1088/0957-0233/24/9/094011 | es_ES |
dc.description.references | Leite, L., Bonet, J. L., Pallarés, L., Miguel, P. F., & Fernández-Prada, M. A. (2013). Experimental research on high strength concrete slender columns subjected to compression and uniaxial bending with unequal eccentricities at the ends. Engineering Structures, 48, 220-232. doi:10.1016/j.engstruct.2012.07.039 | es_ES |
dc.description.references | Leite, L., Bonet, J. L., Pallarés, L., Miguel, P. F., & Fernandez-Prada, M. A. (2012). Behavior of RC slender columns under unequal eccentricities and skew angle loads at the ends. Engineering Structures, 40, 254-266. doi:10.1016/j.engstruct.2012.02.017 | es_ES |
dc.description.references | Garzón-Roca, J., Ruiz-Pinilla, J., Adam, J. M., & Calderón, P. A. (2011). An experimental study on steel-caged RC columns subjected to axial force and bending moment. Engineering Structures, 33(2), 580-590. doi:10.1016/j.engstruct.2010.11.016 | es_ES |
dc.description.references | Realfonzo, R., Napoli, A., & Pinilla, J. G. R. (2014). Cyclic behavior of RC beam-column joints strengthened with FRP systems. Construction and Building Materials, 54, 282-297. doi:10.1016/j.conbuildmat.2013.12.043 | es_ES |
dc.description.references | Torres, B., Payá-Zaforteza, I., Calderón, P. A., & Adam, J. M. (2011). Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring. Engineering Structures, 33(2), 539-548. doi:10.1016/j.engstruct.2010.11.012 | es_ES |
dc.description.references | www.fos-s.be | es_ES |
dc.description.references | www.smartec.ch | es_ES |
dc.description.references | www.alava-ing.es | es_ES |
dc.description.references | http://www.micronoptics.com | es_ES |
dc.description.references | B. Glišić Inaudi D J.M. Lau 7th International Conference on Multi-Purpose High-Rise Towers and Tall Buildings (IFHS) 2005 | es_ES |
dc.description.references | Rinaudo, P., Torres, B., Paya-Zaforteza, I., Calderón, P. A., & Sales, S. (2015). Evaluation of new regenerated fiber Bragg grating high-temperature sensors in an ISO 834 fire test. Fire Safety Journal, 71, 332-339. doi:10.1016/j.firesaf.2014.11.024 | es_ES |
dc.description.references | Moyo, P., Brownjohn, J. M. W., Suresh, R., & Tjin, S. C. (2005). Development of fiber Bragg grating sensors for monitoring civil infrastructure. Engineering Structures, 27(12), 1828-1834. doi:10.1016/j.engstruct.2005.04.023 | es_ES |
dc.description.references | B. Torres Górriz Definición de las pautas y condiciones de monitorización, encapsulado y fijación de sensores de fibra óptica para la medida de deformación y temperatura en estructuras. Ed. UPV 2012 | es_ES |
dc.description.references | Kinet, D., Mégret, P., Goossen, K., Qiu, L., Heider, D., & Caucheteur, C. (2014). Fiber Bragg Grating Sensors toward Structural Health Monitoring in Composite Materials: Challenges and Solutions. Sensors, 14(4), 7394-7419. doi:10.3390/s140407394 | es_ES |