- -

Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems

Show simple item record

Files in this item

dc.contributor.author Jimenez, Noe es_ES
dc.contributor.author Romero García, Vicente es_ES
dc.contributor.author Pagneux, Vincent es_ES
dc.contributor.author Groby, J.P. es_ES
dc.date.accessioned 2018-05-21T04:22:35Z
dc.date.available 2018-05-21T04:22:35Z
dc.date.issued 2017 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/102312
dc.description.abstract [EN] Perfect, broadband and asymmetric sound absorption is theoretically, numerically and experimentally reported by using subwavelength thickness panels in a transmission problem. The panels are composed of a periodic array of varying crosssection waveguides, each of them being loaded by Helmholtz resonators (HRs) with graded dimensions. The low cut-off frequency of the absorption band is fixed by the resonance frequency of the deepest HR, that reduces drastically the transmission. The preceding HR is designed with a slightly higher resonance frequency with a geometry that allows the impedance matching to the surrounding medium. Therefore, reflection vanishes and the structure is critically coupled. This results in perfect sound absorption at a single frequency. We report perfect absorption at 300¿Hz for a structure whose thickness is 40 times smaller than the wavelength. Moreover, this process is repeated by adding HRs to the waveguide, each of them with a higher resonance frequency than the preceding one. Using this frequency cascade effect, we report quasi-perfect sound absorption over almost two frequency octaves ranging from 300 to 1000¿Hz for a panel composed of 9 resonators with a total thickness of 11¿cm, i.e., 10 times smaller than the wavelength at 300¿Hz. es_ES
dc.description.sponsorship The authors acknowledge fnancial support from the Metaudible Project No. ANR-13-BS09-0003, cofunded by ANR and FRAE.
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation ANR/ANR-13-BS09-0003 es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Acoustics es_ES
dc.subject Metamaterials es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-017-13706-4 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Jimenez, N.; Romero García, V.; Pagneux, V.; Groby, J. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports. 7(1). doi:10.1038/s41598-017-13706-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-017-13706-4 es_ES
dc.description.upvformatpinicio 13595 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 29051627
dc.identifier.pmcid PMC5648927
dc.relation.pasarela S\344704 es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.relation.references Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature materials 11, 917–924 (2012). es_ES
dc.relation.references Ding, Y., Liu, Z., Qiu, C. & Shi, J. Metamaterial with simultaneously negative bulk modulus and mass density. Physical review letters 99, 093904 (2007). es_ES
dc.relation.references Christensen, J., Kadic, M., Kraft, O. & Wegener, M. Vibrant times for mechanical metamaterials. Mrs Communications 5, 453–462 (2015). es_ES
dc.relation.references Yang, Z., Mei, J., Yang, M., Chan, N. & Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008). es_ES
dc.relation.references Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nature Reviews Materials 1, 16001 (2016). es_ES
dc.relation.references Landy, N. I., Sajuyigbe, S., Mock, J., Smith, D. & Padilla, W. Perfect metamaterial absorber. Physical review letters 100, 207402 (2008). es_ES
dc.relation.references Watts, C. M., Liu, X. & Padilla, W. J. Metamaterial electromagnetic wave absorbers. Advanced materials 24 (2012). es_ES
dc.relation.references Cui, Y. et al. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser & Photonics Reviews 8, 495–520 (2014). es_ES
dc.relation.references Lee, Y. P., Rhee, J. Y., Yoo, Y. J. & Kim, K. W. Metamaterials for perfect absorption. Springer series in materials science (ISSN 0933-033X 236 (2016). es_ES
dc.relation.references Cui, Y. et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano letters 12, 1443–1447 (2012). es_ES
dc.relation.references Ding, F., Cui, Y., Ge, X., Jin, Y. & He, S. Ultra-broadband microwave metamaterial absorber. Applied physics letters 100, 103506 (2012). es_ES
dc.relation.references Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012). es_ES
dc.relation.references Ma, G., Yang, M., Xiao, S., Yang, Z. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014). es_ES
dc.relation.references Romero-García, V. et al. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519 (2016). es_ES
dc.relation.references Jiang, X. et al. Ultra-broadband absorption by acoustic metamaterials. Applied Physics Letters 105, 243505 (2014). es_ES
dc.relation.references Leclaire, P., Umnova, O., Dupont, T. & Panneton, R. Acoustical properties of air-saturated porous material with periodically distributed dead-end poresa). J. Acoust. Soc. Am. 137, 1772–1782 (2015). es_ES
dc.relation.references Groby, J.-P., Huang, W., Lardeau, A. & Aurégan, Y. The use of slow waves to design simple sound absorbing materials. J. Appl. Phys. 117, 124903 (2015). es_ES
dc.relation.references Groby, J.-P., Pommier, R. & Aurégan, Y. Use of slow sound to design perfect and broadband passive sound absorbing materials. J. Acoust. Soc. Am. 139, 1660–1671 (2016). es_ES
dc.relation.references Li, Y. & Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108, 063502 (2016). es_ES
dc.relation.references Romero-García, V., Theocharis, G., Richoux, O. & Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America 139, 3395–3403 (2016). es_ES
dc.relation.references Jiménez, N., Huang, W., Romero-García, V., Pagneux, V. & Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters 109, 121902 (2016). es_ES
dc.relation.references Jiménez, N., Romero-García, V., Pagneux, V. & Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys. Rev. B 95, 014205 (2017). es_ES
dc.relation.references Achilleos, V., Theocharis, G., Richoux, O. & Pagneux, V. Non-hermitian acoustic metamaterials: Role of exceptional points in sound absorption. Physical Review B 95, 144303 (2017). es_ES
dc.relation.references Santillán, A. & Bozhevolnyi, S. I. Acoustic transparency and slow sound using detuned acoustic resonators. Phys. Rev. B 84, 064304 (2011). es_ES
dc.relation.references Chong, Y., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Physical review letters 105, 053901 (2010). es_ES
dc.relation.references Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011). es_ES
dc.relation.references Groby, J.-P., Duclos, A., Dazel, O., Boeckx, L. & Lauriks, W. Absorption of a rigid frame porous layer with periodic circular inclusions backed by a periodic grating. J. Acoust. Soc. Am. 129, 3035–3046 (2011). es_ES
dc.relation.references Lagarrigue, C., Groby, J., Tournat, V., Dazel, O. & Umnova, O. Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions. J. Acoust. Soc. Am. 134, 4670–4680 (2013). es_ES
dc.relation.references Boutin, C. Acoustics of porous media with inner resonators. J. Acoust. Soc. Am. 134, 4717–4729 (2013). es_ES
dc.relation.references Groby, J.-P. et al. Enhancing the absorption properties of acoustic porous plates by periodically embedding helmholtz resonators. J. Acoust. Soc. Am. 137, 273–280 (2015). es_ES
dc.relation.references Wu, T., Cox, T. & Lam, Y. From a profiled diffuser to an optimized absorber. The Journal of the Acoustical Society of America 108, 643–650 (2000). es_ES
dc.relation.references Yang, M., Chen, S., Fu, C. & Sheng, P. Optimal sound-absorbing structures. Materials Horizons (2017). es_ES
dc.relation.references Yang, J., Lee, J. S. & Kim, Y. Y. Multiple slow waves in metaporous layers for broadband sound absorption. Journal of Physics D: Applied Physics 50, 015301 (2016). es_ES
dc.relation.references Merkel, A., Theocharis, G., Richoux, O., Romero-García, V. & Pagneux, V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Appl. Phys. Lett. 107, 244102 (2015). es_ES
dc.relation.references Piper, J. R., Liu, V. & Fan, S. Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104, 251110 (2014). es_ES
dc.relation.references Yang, M. et al. Subwavelength total acoustic absorption with degenerate resonators. Appl. Phys. Lett. 107, 104104 (2015). es_ES
dc.relation.references Jiménez, N. et al. Broadband quasi perfect absorption using chirped multi-layer porous materials. AIP Advances 6, 121605 (2016). es_ES
dc.relation.references Tsakmakidis, K. L., Boardman, A. D. & Hess, O. Trapped rainbow storage of light in metamaterials. Nature 450, 397–401 (2007). es_ES
dc.relation.references Zhu, J. et al. Acoustic rainbow trapping. Scientific reports 3 (2013). es_ES
dc.relation.references Romero-Garcia, V., Picó, R., Cebrecos, A., Sanchez-Morcillo, V. & Staliunas, K. Enhancement of sound in chirped sonic crystals. Applied Physics Letters 102, 091906 (2013). es_ES
dc.relation.references Ni, X. et al. Acoustic rainbow trapping by coiling up space. Scientific reports 4 (2014). es_ES
dc.relation.references Colombi, A., Colquitt, D., Roux, P., Guenneau, S. & Craster, R. V. A seismic metamaterial: The resonant metawedge. Scientific reports 6 (2016). es_ES
dc.relation.references Powell, M. J. A fast algorithm for nonlinearly constrained optimization calculations. In Numerical analysis, 144–157 (Springer, 1978). es_ES
dc.relation.references Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Am. 89, 550–558 (1991). es_ES
dc.relation.references Theocharis, G., Richoux, O., García, V. R., Merkel, A. & Tournat, V. Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New J. Phys. 16, 093017 (2014). es_ES
dc.relation.references Kergomard, J. & Garcia, A. Simple discontinuities in acoustic waveguides at low frequencies: critical analysis and formulae. J. Sound Vib. 114, 465–479 (1987). es_ES
dc.relation.references Dubos, V. et al. Theory of sound propagation in a duct with a branched tube using modal decomposition. Acta Acustica united with Acustica 85, 153–169 (1999). es_ES
dc.relation.references Mechel, F. P. Formulas of acoustics, 2nd ed. (Springer Science & Business Media, 2008). es_ES


This item appears in the following Collection(s)

Show simple item record