- -

Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cuesta Frau, David es_ES
dc.contributor.author Miró Martínez, Pau es_ES
dc.contributor.author Jordán Núñez, Jorge es_ES
dc.contributor.author Oltra Crespo, Sandra es_ES
dc.contributor.author Molina Picó, Antonio es_ES
dc.date.accessioned 2018-05-21T04:25:55Z
dc.date.available 2018-05-21T04:25:55Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0010-4825 es_ES
dc.identifier.uri http://hdl.handle.net/10251/102322
dc.description.abstract [EN] This paper evaluates the performance of first generation entropy metrics, featured by the well known and widely used Approximate Entropy (ApEn) and Sample Entropy (SampEn) metrics, and what can be considered an evolution from these, Fuzzy Entropy (FuzzyEn), in the Electroencephalogram (EEG) signal classification context. The study uses the commonest artifacts found in real EEGs, such as white noise, and muscular, cardiac, and ocular artifacts. Using two different sets of publicly available EEG records, and a realistic range of amplitudes for interfering artifacts, this work optimises and assesses the robustness of these metrics against artifacts in class segmentation terms probability. The results show that the qualitative behaviour of the two datasets is similar, with SampEn and FuzzyEn performing the best, and the noise and muscular artifacts are the most confounding factors. On the contrary, there is a wide variability as regards initialization parameters. The poor performance achieved by ApEn suggests that this metric should not be used in these contexts. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers in Biology and Medicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Electroencephalograms es_ES
dc.subject Signal Classification es_ES
dc.subject Approximate Entropy es_ES
dc.subject Sample Entropy es_ES
dc.subject Fuzzy Entropy es_ES
dc.subject EEG Artifacts es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compbiomed.2017.05.028 es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-08-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Cuesta Frau, D.; Miró Martínez, P.; Jordán Núñez, J.; Oltra Crespo, S.; Molina Picó, A. (2017). Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Computers in Biology and Medicine. 87:141-151. doi:10.1016/j.compbiomed.2017.05.028 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.compbiomed.2017.05.028 es_ES
dc.description.upvformatpinicio 141 es_ES
dc.description.upvformatpfin 151 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 87 es_ES
dc.identifier.pmid 28595129
dc.relation.pasarela S\338231 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem