Mostrar el registro sencillo del ítem
dc.contributor.author | Pons Tomás, Patricia![]() |
es_ES |
dc.contributor.author | Jaén Martínez, Francisco Javier![]() |
es_ES |
dc.contributor.author | Catalá Bolós, Alejandro![]() |
es_ES |
dc.date.accessioned | 2018-05-21T04:33:18Z | |
dc.date.available | 2018-05-21T04:33:18Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0957-4174 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/102344 | |
dc.description.abstract | [EN] There is growing interest in the automatic detection of animals' behaviors and body postures within the field of Animal Computer Interaction, and the benefits this could bring to animal welfare, enabling remote communication, welfare assessment, detection of behavioral patterns, interactive and adaptive systems, etc. Most of the works on animals' behavior recognition rely on wearable sensors to gather information about the animals' postures and movements, which are then processed using machine learning techniques. However, non-wearable mechanisms such as depth-based tracking could also make use of machine learning techniques and classifiers for the automatic detection of animals' behavior. These systems also offer the advantage of working in set-ups in which wearable devices would be difficult to use. This paper presents a depth-based tracking system for the automatic detection of animals' postures and body parts, as well as an exhaustive evaluation on the performance of several classification algorithms based on both a supervised and a knowledge-based approach. The evaluation of the depth -based tracking system and the different classifiers shows that the system proposed is promising for advancing the research on animals' behavior recognition within and outside the field of Animal Computer Interaction. (C) 2017 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | This work is funded by the European Development Regional Fund (EDRF-FEDER) and supported by Spanish MINECO with Project TIN2014-60077-R. It also received support from a postdoctoral fellowship within the VALi+d Program of the Conselleria d'Educacio, Cultura I Esport (Generalitat Valenciana) awarded to Alejandro Catala (APOSTD/2013/013). The work of Patricia Pons is supported by a national grant from the Spanish MECD (FPU13/03831). Special thanks to our cat participants and their owners, and many thanks to our feline caretakers and therapists, Olga, Asier and Julia, for their valuable collaboration and their dedication to animal wellbeing. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Expert Systems with Applications | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Tracking system | es_ES |
dc.subject | Animal Computer Interaction | es_ES |
dc.subject | Depth-based tracking | es_ES |
dc.subject | Classification algorithms | es_ES |
dc.subject | Intelligent system | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Assessing machine learning classifiers for the detection of animals' behavior using depth-based tracking | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.eswa.2017.05.063 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU13%2F03831/ES/FPU13%2F03831/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2013%2F013/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2014-60077-R/ES/SISTEMA DE TERAPIAS DE JUEGO BASADO EN SUPERFICIES INTERACTIVAS PARA LA MEJORA DEL IMPACTO EMOCIONAL DERIVADO DE LA HOSPITALIZACION PEDIATRICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//APOSTD%2F2013%2F013/ES/AYUDAS PARA LA CONTRATACIÓN DE PERSONAL EN FORMACIÓN EN FASE POSTDOCTORAL. PROGRAMA VALI+D-CATALA BOLOS, ALEJANDRO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Pons Tomás, P.; Jaén Martínez, FJ.; Catalá Bolós, A. (2017). Assessing machine learning classifiers for the detection of animals' behavior using depth-based tracking. Expert Systems with Applications. 86:235-246. https://doi.org/10.1016/j.eswa.2017.05.063 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.eswa.2017.05.063 | es_ES |
dc.description.upvformatpinicio | 235 | es_ES |
dc.description.upvformatpfin | 246 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 86 | es_ES |
dc.relation.pasarela | S\342973 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |