- -

System for monitoring the wellness state of people in domestic environments employing emoticon-based HCI

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

System for monitoring the wellness state of people in domestic environments employing emoticon-based HCI

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-García, Laura es_ES
dc.contributor.author Parra-Boronat, Lorena es_ES
dc.contributor.author Romero Martínez, José Oscar es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2018-05-21T04:34:56Z
dc.date.available 2018-05-21T04:34:56Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0920-8542 es_ES
dc.identifier.uri http://hdl.handle.net/10251/102349
dc.description.abstract [EN] Wellness state is affected by the habitability state of the domestic environment. Monitoring it can help to discover the causes of a low wellness levels aiding people in the improvement of their quality of life. In this paper, we propose a system to monitor the wellness state of people utilizing Likert¿s scale to determine the state of the user through an emoticon-based human¿computer interaction. The system is intended for domestic environments and measures the habitability conditions of the dwelling (such as temperature, humidity, luminosity and noise) employing sensors. An algorithm is designed in order to establish how to measure those conditions and to calculate the statistics that allows tracking their progress. The obtained information is presented to the user to compare his/her wellness state with the habitability conditions. Measures in a real domestic environment were performed in order to determine the configuration of our system. The energy efficiency of the algorithm provides an improvement between 99.36 and 99.62% in the energy consumption depending on the selected parameters. es_ES
dc.description.sponsorship This work has been partially supported by the “Ministerio de Ciencia e Innovación”, through the “Plan Nacional de I+D+i 2008–2011” and by the “Ministerio de Educación, Cultura y Deporte”, through the grand “Ayudas para contratos predoctorales de Formación del Profesorado Universitario FPU14/02953”.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Human computer interaction es_ES
dc.subject Wellness state es_ES
dc.subject Habitability es_ES
dc.subject E-health es_ES
dc.subject Indoor monitoring es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title System for monitoring the wellness state of people in domestic environments employing emoticon-based HCI es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-017-2214-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU2014-02953/ES/FPU2014-02953/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-12-13 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation García-García, L.; Parra-Boronat, L.; Romero Martínez, JO.; Lloret, J. (2017). System for monitoring the wellness state of people in domestic environments employing emoticon-based HCI. The Journal of Supercomputing. 1-25. https://doi.org/10.1007/s11227-017-2214-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11227-017-2214-4 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\357190 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Sendra S, Parra L, Lloret J, Tomás J (2017) Smart system for children’s chronic illness monitoring. Inf Fusion 40:76–86 es_ES
dc.description.references Lloret J, Parra L, Taha M, Tomás J (2017) An architecture and protocol for smart continuous eHealth monitoring using 5G. Comput Netw. https://doi.org/10.1016/j.comnet.2017.05.018 (in press) es_ES
dc.description.references Hettler B (1976) The six dimensions of wellness. National Wellness Institute. http://c.ymcdn.com/sites/www.nationalwellness.org/resource/resmgr/docs/sixdimensionsfactsheet.pdf . Accessed 12 Dec 2017 es_ES
dc.description.references Dunn HL (1959) What high-level wellness means. Can J Public Health 50(11):447–457 es_ES
dc.description.references Herbes DJ, Mulder CH (2016) Housing and subjective well-being of older adults in Europe. J Hous Built Environ. https://doi.org/10.1007/s10901-016-9526-1 es_ES
dc.description.references OECD (2015) How’s life? measuring well-being. http://www.oecd-ilibrary.org/economics/how-s-life_23089679;jsessionid=55pjippucpjrq.x-oecd-live-02 . Accessed 12 Dec 2017 es_ES
dc.description.references Donaldson GC, Seemungal T, Jeffries DJ, Wedzicha JA (1999) Effect of temperature on lung function and symptoms in chronic obstructive pulmonary disease. Eur Respir J ERS 13(4):844–849 es_ES
dc.description.references Schwartz J, Samet J, Patz J (2004) Hospital admissions for heart disease: the effects of temperature and humidity. Epidemiology 15(6):755–761 es_ES
dc.description.references National Institute of Statistics of Spain (2005) Defunciones según causa de muerte en 2003. http://www.ine.es/prensa/np393.pdf . Accessed 12 Dec 2017 es_ES
dc.description.references Grimes A, Denne T, Howden-Dhapman P, Arnold R, Telfar-Barnard L, Preval N, Young C (2012) Cost benefit analysis of the warm up New Zealand: heat smart programme. University of Wellington, Wellington. http://sustainablecities.org.nz/wp-content/uploads/NZIF_CBA_report2.pdf . Accessed 12 Dec 2017 es_ES
dc.description.references Martínez-Pérez B, de la Torre-Díez I, Candelas-Plasencia S, López-Coronado M (2013) Developement and evaluation of tools for measuring the quality of experience (QoE) in mHealth applications. J Med Syst 37(5):9976 es_ES
dc.description.references Walther JB, D’addario KP (2001) The impacts of emotions on message interpretation in computer-mediated communication. Soc Sci Comput Rev 19(3):324–347 es_ES
dc.description.references Ghayvat H, Liu J, Mukhopadhay SC, Gui X (2015) Wellness sensor networks: a proposal and implementation for smart home for assisted living. IEEE Sens J 15(12):7341–7348 es_ES
dc.description.references Forkan ARM, Hu W (2016) A context-aware, predictive and protective approach for wellness monitoring of cardiac patients. In: Computing in Cardiology Conference, Vancouver, Canada, pp 369–372 es_ES
dc.description.references Booc CER, San Diego CMD, Tee ML, Caro JDL (2016) A mobile application for campus-based psychosocial wellness program. In: 7th International Conference on Information, Systems and Applications, Chalkidiki, Greece, pp 1–4 es_ES
dc.description.references Khan WA, Idris M, Ali T, Ali R, Hussain S, Hussain M, Amin MB, Khattak AM, Weiwei Y, Afzal M, Lee S, Kang BH, (2015) Correlating health and wellness analytics for personalized decision making. Boston, USA, pp 256–261 es_ES
dc.description.references Lim C, Kim ZM, Choi H (2017) Context-based healthy lifestyle recommendation for enhancing user’s wellness. In: IEEE International Conference on Big Data and Smart Computing, Jeju, South Korea, pp 418–421 es_ES
dc.description.references Tulu B, Strong D, Wang L, He Q, Agu E, Pedersen P, Djamasbi S (2016) Design implications of user experience studies: the case of a diabetes wellness app. In: 49th Hawaii International Conference on System Sciences, Koloa, USA, pp 3473–3482 es_ES
dc.description.references Kaur D, Siddaraju GS (2016) Experimental study of cardiac functionality for the wellness of individual by developing an android application. In: International Conference on Computation System and Information Technology for Sustainable Solutions, Bangalore, India, pp 174–183 es_ES
dc.description.references Arshad A, Khan S, Alam AHMZ, Tasnim R, Boby RI (2016) Health and wellness monitoring of elderly people using intelligent sensing technique. In: International Conference on Computer and Communications Engineering, Kuala Lumpur, Malaysia, pp 231–235 es_ES
dc.description.references Martin CJ, Platt SD, Hunt SM (1987) Housing conditions and ill health. Br Med J (Clin Res Ed) 294(6580):1125–1127 es_ES
dc.description.references Evans GW, Wells NM, Moch A (2003) Housing and mental health: a review of the evidence and a methodological and conceptual critique. J Soc Issues 59(3):475–500 es_ES
dc.description.references Shaw M (2004) Housing and public health. Annu Rev Public Health 25:397–418 es_ES
dc.description.references Thomson H, Thomas S (2015) Developing empirically supported theories of change for housing investment and health. Soc Sci Med 124:205–214 es_ES
dc.description.references Gustafson CJ, Feldman SR, Quandt SA, Isom S, Chem H, Spears CR, Arcury TA (2014) The association of skin conditions with housing conditions among North Carolina Latino migrant farm workers. Int J Dermatol 53(9):1091–1097 es_ES
dc.description.references Laquesta R, Garcia L, Garcia-Magarino I, Lloret J (2017) System to recommend the best place to life based on wellness state of the user employing the heart rate variability. IEEE Access 5:10594–10604 es_ES
dc.description.references Isiaka F, Mwitondi K, Ibrahim A (2015) Automatic prediction and detection of affect state based on invariant human computer interaction and human physiological response. In: Seventh International Conference on Computational Intelligence, Modelling and Simulation, Kuantan, Malaysia, pp 19–25 es_ES
dc.description.references Han S, Liu R, Zhu C, Soo YG, Yu H, Liu T, Duan F (2016) Development of a human computer interaction system based on multi-modal gaze tracking methods. In: IEEE International Conference on Robotics and Biomimetics, Qingdao, China, pp 1894–1899 es_ES
dc.description.references Chen B, Huang S, Tsai W (2017) Eliminating driving distractions: human–computer interaction with built-in applications. IEEE Veh Technol Mag 12(1):20–29 es_ES
dc.description.references Kamal S, Sayeed F, Rafeeq M (2016) Facial emotion recognition for human–computer interactions using hybrid feature extraction technique. In: International Conference on Data Mining and Advanced Computing, Ernakulam, India, pp 180–184 es_ES
dc.description.references Agrawal R, Gupta N (2016) Real time hand gesture recognition for human computer interaction. In: IEEE 6th International Conference on Advanced Computing, Bhimavaram, India, pp 470–475 es_ES
dc.description.references Sánchez CS, Mavrogianni A, González FJN (2017) On the minimal thermal habitability conditions in low income dwellings in Spain for a new definition of fuel poverty. Build Environ 114:344–356 es_ES
dc.description.references Ministry of Health, Social Services and Equality of Spain (2015) Plan Nacional de Actuaciones Preventivas de los Efectos del Exceso de Temperaturas Sobre la Salud. http://www.msssi.gob.es/ciudadanos/saludAmbLaboral/planAltasTemp/2015/docs/Plan_Nacional_de_Exceso_de_Temperaturas_2015.pdf . Accessed 12 Dec 2017 es_ES
dc.description.references Bornehag CG, Blomquist G, Gyntelberg F, Järvholm B, Malmberg P, Nordvall L, Nielsen A, Pershagen G, Sundell J (2001) Dampness in buildings and health. Indoor Air 11(2):72–86 es_ES
dc.description.references Garret MH, Rayment PR, Hooper MA, Abramson MJ, Hooper BM (1997) Indoor airborne fungal spores, house dampness and associations with environmental factors and respiratory health in children. Clin Exp Allergy 28:459–467 es_ES
dc.description.references Ariës MBC, Zonneveldt L (2004) Architectural aspects of healthy lighting. In: 21th Conference on Passive and Low Energy Architecture, The Netherlands, pp 1–5 es_ES
dc.description.references Boubekri M, Cheung IN, Reid KJ, Wang C, Zee PC (2014) Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. J Clin Sleep Med 10(6):603–611 es_ES
dc.description.references Beute F, de Kort YAW (2014) Salutogenic effects of the environments: review of health protective effects of nature and daylight. Appl Psychol Health Well Being 6(1):67–95 es_ES
dc.description.references Boyce P, Hunter C, Howlett O (2003) The benefits of daylight through windows. Rensselaer Polytechnic Institute, Troy es_ES
dc.description.references Hoogendijk WJG, Lips P, Dik MG, Deeg DJH, Beekman ATF, Penninx BWJH (2008) Depression is associated with decreased 25-hydroxyvitamin D and increased parathyroid hormone levels in older adults. Arch Gen Psychiatry 65(5):508–512 es_ES
dc.description.references Ising H, Kruppa B (2004) Health effects caused by noise: evidence in the literature from the past 25 years. Noise Health 6(22):5–13 es_ES
dc.description.references Sandra S, Lloret J, Garcia M, Toledo JF (2011) Power saving and energy optimization techniques for wireless sensor networks. J Commun 6(6):439–459 es_ES
dc.description.references Heinzelman WR, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the IEEE 33rd Annual Hawaii International Conference on System Sciences, Maui, Hawaii es_ES
dc.description.references Kaps JP, Sunar B (2006) Energy comparison of AES and SHA-1 for ubiquitous computing. In: Proceedings of the EUC 2006 Workshops: NCUS, SecUbiq, USN, TRUST, ESO, and MSA, Seoul, Korea es_ES
dc.description.references Parra L, Sendra S, Jiménez JM, Lloret J (2016) Multimedia sensors embedded in smartphones for ambient assisted living and e-health. Multimed Tools Appl 75(21):13271–13297 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem