- -

Continuous Space Models for CLIR

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Continuous Space Models for CLIR

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gupta, Parth es_ES
dc.contributor.author Banchs, Rafael es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.date.accessioned 2018-05-25T04:21:30Z
dc.date.available 2018-05-25T04:21:30Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0306-4573 es_ES
dc.identifier.uri http://hdl.handle.net/10251/102613
dc.description.abstract [EN] We present and evaluate a novel technique for learning cross-lingual continuous space models to aid cross-language information retrieval (CLIR). Our model, which is referred to as external-data composition neural network (XCNN), is based on a composition function that is implemented on top of a deep neural network that provides a distributed learning framework. Different from most existing models, which rely only on available parallel data for training, our learning framework provides a natural way to exploit monolingual data and its associated relevance metadata for learning continuous space representations of language. Cross-language extensions of the obtained models can then be trained by using a small set of parallel data. This property is very helpful for resource-poor languages, therefore, we carry out experiments on the English-Hindi language pair. On the conducted comparative evaluation, the proposed model is shown to outperform state-of-the-art continuous space models with statistically significant margin on two different tasks: parallel sentence retrieval and ad-hoc retrieval. es_ES
dc.description.sponsorship We thank German Sanchis Trilles for helping in conducting experiments with machine translation. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the GeForce Titan GPU used for this research. The research of the first author was supported by FPI grant of UPV. The research of the third author is supported by the SomEMBED TIN2015-71147-C2-1-P MINECO research project and by the Generalitat Valenciana under the grant ALMAMATER (PrometeolI/2014/030). en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Information Processing & Management es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cross-language information retrieval es_ES
dc.subject Latens space models es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Continuous Space Models for CLIR es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ipm.2016.11.002 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-71147-C2-1-P/ES/COMPRENSION DEL LENGUAJE EN LOS MEDIOS DE COMUNICACION SOCIAL - REPRESENTANDO CONTEXTOS DE FORMA CONTINUA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F030/ES/ Adaptive learning and multimodality in machine translation and text transcription/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-04-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Gupta, P.; Banchs, R.; Rosso, P. (2017). Continuous Space Models for CLIR. Information Processing & Management. 53(2):359-370. https://doi.org/10.1016/j.ipm.2016.11.002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.ipm.2016.11.002 es_ES
dc.description.upvformatpinicio 359 es_ES
dc.description.upvformatpfin 370 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\326664 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem