- -

A comparative study of the mechanical, shape-memory, and degradation properties of poly(lactic acid) nanofibers and cellulose nanocrystals reinforced Poly(mannitol sebacate) nanocomposites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A comparative study of the mechanical, shape-memory, and degradation properties of poly(lactic acid) nanofibers and cellulose nanocrystals reinforced Poly(mannitol sebacate) nanocomposites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sonseca Olalla, Agueda es_ES
dc.contributor.author Menes Corrales, Olivia es_ES
dc.contributor.author Giménez Torres, Enrique es_ES
dc.date.accessioned 2018-05-26T04:17:55Z
dc.date.available 2018-05-26T04:17:55Z
dc.date.issued 2017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/102682
dc.description.abstract [EN] Nanocomposites based on a poly(mannitol sebacate) (PMS) matrix -a member of the poly(polyol sebacate) (PPS) polyester family -reinforced either with cellulose nanocrystals (CNCs) or electrospun poly(lactic acid) nanofibers (NF-PLA) have been developed in order to evaluate the reinforcing filler morphology for achieving useful adaptive materials with shape-memory functionality. All the as-prepared nanocomposites have better mechanical properties than the neat PMS matrices, allowing for a wider range of mechanical and degradation properties. However, a superior balance of properties was observed after the introduction of PLA electrospun nanofibers into the low-modulus PMS matrix. In particular, enhanced shape-memory properties are imparted to the PMS matrix by using PLA nanofibers as reinforcing filler, specifically in a temperature range (15-45 degrees C) of interest for possible medical applications. In addition, two well-separated thermal glass transitions due to matrices and PLA nanofibers could enable the future design of triple-shape-memory systems. Mechanical properties are markedly enhanced with a 4-fold increase when 4 wt% of PLA nanofibers are infiltrated. On increasing the filler content to 10 and 15 wt%, 20-fold and 53-fold enhancements in the Young's modulus were achieved, respectively. These better mechanical properties are accompanied by higher toughness than the neat matrix without reducing the elongation at break. In addition, the shape stability during degradation and the obtained mass loss rates imply that these nanocomposites are useful materials for long-term implants. Here we introduce a sequence of materials based on different fillers that offers great design flexibility, as depending on the geometry and amount of filler employed the properties of the obtained composites can be adjusted to those of living soft to hard tissues, being useful to configure biomedical devices with specific properties, such as for the treatment of patients with coronary artery disease. es_ES
dc.description.sponsorship The authors gratefully acknowledge financial support received from Spanish Ministry of Economy and Competitiveness (Project MAT2010/21494-C03), as well as the support of FPU grant from Spanish Ministry of Education, Culture and Sport (MED-FPU; AP2009-2482).
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof RSC Advances es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title A comparative study of the mechanical, shape-memory, and degradation properties of poly(lactic acid) nanofibers and cellulose nanocrystals reinforced Poly(mannitol sebacate) nanocomposites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7ra01256j es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21494-C03-01/ES/DESARROLLO DE ESPUMAS Y SISTEMAS RIGIDOS CON MEMORIA DE FORMA BASADOS EN NANOCOMPUESTOS BIODEGRADABLES NANONOESTRUCTURADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ME//AP2009-2482/ES/AP2009-2482/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Sonseca Olalla, A.; Menes Corrales, O.; Giménez Torres, E. (2017). A comparative study of the mechanical, shape-memory, and degradation properties of poly(lactic acid) nanofibers and cellulose nanocrystals reinforced Poly(mannitol sebacate) nanocomposites. RSC Advances. 7(35):21869-21882. doi:10.1039/c7ra01256j es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1039/c7ra01256j es_ES
dc.description.upvformatpinicio 21869 es_ES
dc.description.upvformatpfin 21882 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 35 es_ES
dc.identifier.eissn 2046-2069 es_ES
dc.relation.pasarela S\334812 es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem