Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez Bertí, Enrique | es_ES |
dc.contributor.author | Sánchez Salmerón, Antonio José | es_ES |
dc.contributor.author | Ricolfe Viala, Carlos | es_ES |
dc.date.accessioned | 2018-05-26T04:23:48Z | |
dc.date.available | 2018-05-26T04:23:48Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1729-8806 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/102700 | |
dc.description.abstract | [EN] The goal of this research work is to improve the accuracy of human pose estimation using the deformation part model without increasing computational complexity. First, the proposed method seeks to improve pose estimation accuracy by adding the depth channel to deformation part model, which was formerly defined based only on RGB channels, to obtain a 4-dimensional deformation part model. In addition, computational complexity can be controlled by reducing the number of joints by taking into account in a reduced 4-dimensional deformation part model. Finally, complete solutions are obtained by solving the omitted joints by using inverse kinematic models. The main goal of this article is to analyze the effect on pose estimation accuracy when using a Kalman filter added to 4-dimensional deformation part model partial solutions. The experiments run with two data sets showing that this method improves pose estimation accuracy compared with state-of-the-art methods and that a Kalman filter helps to increase this accuracy. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partially financed by Plan Nacional de I + D, Comision Interministerial de Ciencia y Tecnologa (FEDERCICYT) under the project DPI2013-44227-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Advanced Robotic Systems | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | DPM | es_ES |
dc.subject | Kalman filter | es_ES |
dc.subject | Pose estimation | es_ES |
dc.subject | Kinematic constraints | es_ES |
dc.subject | Human activity recognition | es_ES |
dc.subject | Computer vision | es_ES |
dc.subject | Motion and tracking | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | 4-Dimensional deformation part model for pose estimation using Kalman filter constraints | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1729881417714230 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2013-44227-R/ES/METODOLOGIA DE DISEÑO DE SISTEMAS BIOMECATRONICOS. APLICACION AL DESARROLLO DE UN ROBOT PARALELO HIBRIDO PARA DIAGNOSTICO Y REHABILITACION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Martínez Bertí, E.; Sánchez Salmerón, AJ.; Ricolfe Viala, C. (2017). 4-Dimensional deformation part model for pose estimation using Kalman filter constraints. International Journal of Advanced Robotic Systems. 14(3):1-13. https://doi.org/10.1177/1729881417714230 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1177/1729881417714230 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\362235 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |