- -

Maharam-type kernel representation for operators with a trigonometric domination

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Maharam-type kernel representation for operators with a trigonometric domination

Show simple item record

Files in this item

dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2018-06-01T04:21:09Z
dc.date.available 2018-06-01T04:21:09Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0001-9054 es_ES
dc.identifier.uri http://hdl.handle.net/10251/103129
dc.description.abstract [EN] Consider a linear and continuous operator T between Banach function spaces. We prove that under certain requirements an integral inequality for T is equivalent to a factorization of T through a specific kernel operator: in other words, the operator T has what we call a Maharam-type kernel representation. In the case that the inequality provides a domination involving trigonometric functions, a special factorization through the Fourier operator is given. We apply this result to study the problem that motivates the paper: the approximation of functions in L2[0, 1] by means of trigonometric series whose Fourier coefficients are given by weighted trigonometric integrals. es_ES
dc.description.sponsorship This research has been supported by MTM2016-77054-C2-1-P (Ministerio de Economia, Industria y Competitividad, Spain). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD/MTM2016-77054-C2-1-P es_ES
dc.relation.ispartof Aequationes Mathematicae es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Maharam representation es_ES
dc.subject Operator es_ES
dc.subject Trigonometric series es_ES
dc.subject Domination es_ES
dc.subject Hilbert spaces es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Maharam-type kernel representation for operators with a trigonometric domination es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00010-017-0507-6 es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-12-31 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Sánchez Pérez, EA. (2017). Maharam-type kernel representation for operators with a trigonometric domination. Aequationes Mathematicae. 91(6):1073-1091. doi:10.1007/s00010-017-0507-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00010-017-0507-6 es_ES
dc.description.upvformatpinicio 1073 es_ES
dc.description.upvformatpfin 1091 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 91 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\353452 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.relation.references Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Generalized perfect spaces. Indag. Math. 19(3), 359–378 (2008) es_ES
dc.relation.references Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Factorizing operators on Banach function spaces through spaces of multiplication operators. J. Math. Anal. Appl. 364, 88–103 (2010) es_ES
dc.relation.references Delgado, O., Sánchez Pérez, E.A.: Strong factorizations between couples of operators on Banach function spaces. J. Convex Anal. 20(3), 599–616 (2013) es_ES
dc.relation.references Dodds, P.G., Huijsmans, C.B., de Pagter, B.: Characterizations of conditional expectation type operators. Pacific J. Math. 141(1), 55–77 (1990) es_ES
dc.relation.references Flores, J., Hernández, F.L., Tradacete, P.: Domination problems for strictly singular operators and other related classes. Positivity 15(4), 595–616 (2011). 2011 es_ES
dc.relation.references Fremlin, D.H.: Tensor products of Banach lattices. Math. Ann. 211, 87–106 (1974) es_ES
dc.relation.references Hu, G.: Weighted norm inequalities for bilinear Fourier multiplier operators. Math. Ineq. Appl. 18(4), 1409–1425 (2015) es_ES
dc.relation.references Halmos, P., Sunder, V.: Bounded Integral Operators on $$ L^2$$ L 2 Spaces. Springer, Berlin (1978) es_ES
dc.relation.references Kantorovitch, L., Vulich, B.: Sur la représentation des opérations linéaires. Compositio Math. 5, 119–165 (1938) es_ES
dc.relation.references Kolwicz, P., Leśnik, K., Maligranda, L.: Pointwise multipliers of Calderón- Lozanovskii spaces. Math. Nachr. 286, 876–907 (2013) es_ES
dc.relation.references Kolwicz, P., Leśnik, K., Maligranda, L.: Pointwise products of some Banach function spaces and factorization. J. Funct. Anal. 266(2), 616–659 (2014) es_ES
dc.relation.references Kuo, W.-C., Labuschagne, C.C.A., Watson, B.A.: Conditional expectations on Riesz spaces. J. Math. Anal. Appl. 303, 509–521 (2005) es_ES
dc.relation.references Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979) es_ES
dc.relation.references Maharam, D.: The representation of abstract integrals. Trans. Am. Math. Soc. 75, 154–184 (1953) es_ES
dc.relation.references Maharam, D.: On kernel representation of linear operators. Trans. Am. Math. Soc. 79, 229–255 (1955) es_ES
dc.relation.references Maligranda, L., Persson, L.E.: Generalized duality of some Banach function spaces. Indag. Math. 51, 323–338 (1989) es_ES
dc.relation.references Neugebauer, C.J.: Weighted norm inequalities for averaging operators of monotone functions. Publ. Mat. 35, 429–447 (1991) es_ES
dc.relation.references Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal Domain and Integral Extension of Operators Acting in Function Spaces. Operator Theory: Adv. Appl., vol. 180. Birkhäuser, Basel (2008) es_ES
dc.relation.references Rota, G.C.: On the representation of averaging operators. Rend. Sem. Mat. Univ. Padova. 30, 52–64 (1960) es_ES
dc.relation.references Sánchez Pérez, E.A.: Factorization theorems for multiplication operators on Banach function spaces. Integr. Equ. Oper. Theory 80(1), 117–135 (2014) es_ES
dc.relation.references Schep, A.R.: Factorization of positive multilinear maps. Ill. J. Math. 28(4), 579–591 (1984) es_ES
dc.relation.references Schep, A.R.: Products and factors of Banach function spaces. Positivity 14(2), 301–319 (2010) es_ES


This item appears in the following Collection(s)

Show simple item record