- -

Thermal and Dielectric Characterization of Multi-Walled Carbon NanotubesThermoplastic Polyurethanes Composites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermal and Dielectric Characterization of Multi-Walled Carbon NanotubesThermoplastic Polyurethanes Composites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanchis Sánchez, María Jesús es_ES
dc.contributor.author Carsí Rosique, Marta es_ES
dc.contributor.author Gracia-Fernandez, C.A. es_ES
dc.date.accessioned 2018-06-01T04:23:38Z
dc.date.available 2018-06-01T04:23:38Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0965-545X es_ES
dc.identifier.uri http://hdl.handle.net/10251/103137
dc.description.abstract [EN] Multi-walled carbon nanotubes-thermoplastic polyurethanes composites were characterized by means of differential scanning calorimetry and dielectric relaxation spectroscopy. The composite is characterized by two glass transition temperatures T (g) . The T (g) associated with the soft segment decreases by increasing of carbon nanotubes content, while carbon nanotubes content has practically no effect on the value of the T-g associated with the hard segments. It was observed that rising the temperature and carbon nanotubes content resulted in the increased of both the dielectric permittivity and the loss factor. The presence of carbon nanotubes produces an enhancement of charge carriers trapping, increasing the electrical conductivity. The electrical conductivity of the composite was found to exhibit an insulator to conductor transition at a carbon nanotubes critical content, i.e., the percolation threshold, near 6 wt %. es_ES
dc.description.sponsorship MJS and MC acknowledge the financial support of the DGCYT through Grant MAT2015-63955-R.
dc.language Inglés es_ES
dc.publisher Pleiades Publishing es_ES
dc.relation.ispartof Polymer Science Series A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nanocomposites es_ES
dc.subject Multi-walled carbon nanotubes es_ES
dc.subject Thermoplastic polyurethanes es_ES
dc.subject Differential Scanning Calorimetry es_ES
dc.subject Conductivity es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Thermal and Dielectric Characterization of Multi-Walled Carbon NanotubesThermoplastic Polyurethanes Composites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1134/S0965545X17040083 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-63955-R/ES/NANOESTRUCTURAS SEMICONDUCTORAS Y NANOCOMPOSITES PARA LA RECUPERACION ENERGETICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Sanchis Sánchez, MJ.; Carsí Rosique, M.; Gracia-Fernandez, C. (2017). Thermal and Dielectric Characterization of Multi-Walled Carbon NanotubesThermoplastic Polyurethanes Composites. Polymer Science Series A. 59(4):543-553. https://doi.org/10.1134/S0965545X17040083 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1134/S0965545X17040083 es_ES
dc.description.upvformatpinicio 543 es_ES
dc.description.upvformatpfin 553 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\342616 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references D. W. Schaefer and R. S. Justice, Macromolecules 40 (24), 8501 (2007). es_ES
dc.description.references D. R. Raul and L. M. Robeson, Polymer 49 (15), 3187 (2008). es_ES
dc.description.references P. J. Brigandi, J. M. Cogen, and R. A. Pearson, Polym. Eng. Sci. 54 (1), 1 (2014). es_ES
dc.description.references H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang, and Q. Fu, Prog. Polym. Sci. 39 (4), 627 (2014). es_ES
dc.description.references Polymer-Matrix Composites. Types, Applications and Performance, Ed. by R. Kumar (Nova Sci. Publ., New York, 2014). es_ES
dc.description.references Z. Wenying and Y. Demei, J. Appl. Polym. Sci. 118 (6), 3156 (2010). es_ES
dc.description.references Y. P. Mamunya, V. V. Davydenko, P. Pissis, and E. V. Lebedev, Eur. Polym. J. 38 (9), 1887 (2002) es_ES
dc.description.references B. Redondo-Foj, P. Ortiz-Serna, M. Carsí, M. J. Sanchis, M. Culebras, C. M. Gomez, and A. Cantarero, Polym. Int. 64, 284 (2015). es_ES
dc.description.references S. Deng, Y. Zhu, X. Qi, W. Yu, F. Chen, and Q. Fu, RSC Adv. 6 (51), 45578 (2016). es_ES
dc.description.references M. Khissi, M. El Hasnaoui, J. Belattar, M. P. F. Graca, M. E. Achour, and L. C. Costa, J. Mater. Environ. Sci. 2 (3), 281 (2011). es_ES
dc.description.references M. Hindermann-Bischoff and F. Ehrburger-Dolle, Carbon 39 (3), 375 (2001). es_ES
dc.description.references I. Balberg, Carbon 40 (2), 139 (2002). es_ES
dc.description.references M. Moniruzzaman and K. I. Winey, Macromolecules 39, 5194 (2006). es_ES
dc.description.references A. Bharati, R. Cardinaels, J. W. Seo, M. Wubbenhorst, and P. Moldenaers, Polymer 79 (19), 271 (2015) es_ES
dc.description.references Szycher's Handbook of Polyurethanes, Ed. by M. Szycher (CRC Press, Washington, DC, 1999). es_ES
dc.description.references C. Prisacariu, Polyurethane Elastomers. From Morphology to Mechanical Aspects (Springer, New York, 2011). es_ES
dc.description.references P. Król, Prog. Mater. Sci. 52 (6), 915 (2007). es_ES
dc.description.references P. R. de C. Coelho Filho, M. S. Marchesin, A. R. Morales, and J. R. Bartoli, Mater. Res. 17 (1), 127 (2014). es_ES
dc.description.references R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science 297 (5582), 787 (2002). es_ES
dc.description.references J. Kim and Y. Son, Polymer 88, 29 (2016) es_ES
dc.description.references M. A. Nikje Mir and A. Yaghoubi, Polimery 59(11–12), 776 (2014). es_ES
dc.description.references C. Kingston, R. Zepp, A. Andrady, D. Boverho, R. Fehir, D. Hawkins, J. Roberts, P. Sayre, B. Shelton, Y. Sultan, V. Vejins, and W. Wohlleben, Carbon 68, 33 (2014). es_ES
dc.description.references Anelastic and Dielectric Effects in Polymeric Solids, Ed. by N. G. McCrum, B. E. Read, and G. Williams (Wiley, London, 1967). es_ES
dc.description.references In Broadband Dielectric Spectroscopy, Ed. by F. Kremer, and A. Schonhals (Springer, Berlin, 2003). es_ES
dc.description.references E. Riande and R. Diaz-Calleja, Electrical Properties of Polymers (Marcel Dekker, New York, 2004). es_ES
dc.description.references I. M. Hodge, K. L. Ngai, and C. T. Moynihan, J. Non-Cryst. Solids 351 (2), 104 (2005). es_ES
dc.description.references A. Eceiza, M.D. Martin, K. de la Caba, G. Kortaberria, N. Gabilondo, M. A. Corcuera, and I. Mondragon, Polym. Eng. Sci. 48 (2), 297 (2008) es_ES
dc.description.references A. K. Jonscher, Universal Relaxation Law: A Sequel to Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1996), Chap. 5. es_ES
dc.description.references A. K. Jonscher, Nature 267, 673 (1977). es_ES
dc.description.references G. Li, L. Feng, P. Tong, and Z. Zhai, Prog. Org. Coat. 90, 284 (2016) es_ES
dc.description.references K. Petrie, M. Kontopoulou, and A. Docoslis, Polym. Compos. 37 (9), 2794 (2016) es_ES
dc.description.references N. Aranburu and J. I. Eguiazabal, Polym. Compos. 35 (3), 587 (2014) es_ES
dc.description.references Impedance Spectroscopy. Theory, Experiment, and Applications, Ed. by E. Barsoukov and J. R. Macdonals (Wiley Intersci., New York, 2005). es_ES
dc.description.references S. Havriliak and S. J. Havriliak, Dielectric and Mechanical Relaxation in Materials (Hanser, Munich, 1997), p. 57. es_ES
dc.description.references S. Havriliak and S. Negami, Polymer 8 (4), 161 (1967). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem