Mostrar el registro sencillo del ítem
dc.contributor.author | Jorda Mora, Enrique | es_ES |
dc.contributor.author | Peralta, Antonio M. | es_ES |
dc.date.accessioned | 2018-06-01T04:27:11Z | |
dc.date.available | 2018-06-01T04:27:11Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0001-9054 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/103148 | |
dc.description.abstract | [EN] Let ¿ be a compact Hausdorff space and let A be a C¿ -algebra. We prove that if every weak-2-local derivation on A is a linear derivation and every derivation on C(¿, A) is inner, then every weak-2-local derivation ¿ : C(¿, A) ¿ C(¿, A) is a (linear) derivation. As a consequence we derive that, for every complex Hilbert space H, every weak-2-local derivation ¿ : C(¿, B(H)) ¿ C(¿, B(H)) is a (linear) derivation. We actually show that the same conclusion remains true when B(H) is replaced with an atomic von Neumann algebra. With a modified technique we prove that, if B denotes a compact C¿ -algebra (in particular, when B = K(H)), then every weak-2-local derivation on C(¿, B) is a (linear) derivation. Among the consequences, we show that for each von Neumann algebra M and every compact Hausdorff space ¿, every 2-local derivation on C(¿, M) is a (linear) derivation. | es_ES |
dc.description.sponsorship | E. Jorda is partially supported by the Spanish Ministry of Economy and Competitiveness Project MTM2013-43540-P and Generalitat Valenciana Grant AICO/2016/054. A. M. Peralta is partially supported by the Spanish Ministry of Economy and Competitiveness and European Regional Development Fund Project No. MTM2014-58984-P and Junta de Andalucia Grant FQM375. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Aequationes Mathematicae | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Derivation | es_ES |
dc.subject | 2-local linear map | es_ES |
dc.subject | 2-local symmetric map | es_ES |
dc.subject | 2-local *-derivation | es_ES |
dc.subject | 2-local derivation | es_ES |
dc.subject | Weak-2-local derivation | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Stability of derivations under weak-2-local continuous perturbations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00010-016-0438-7 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-43540-P/ES/METODOS DEL ANALISIS FUNCIONAL Y TEORIA DE OPERADORES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F054/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-58984-P/ES/TECNICAS DE ANALISIS FUNCIONAL EN EL ESTUDIO DE LA GEOMETRIA DE LAS C*-ALGEBRAS Y LAS ESTRUCTURAS DE JORDAN/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Andalucía//FQM-375/ES/ANÁLISIS FUNCIONAL: C*-ÁLGEBRAS Y TEORÍA DE OPERADORES/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Jorda Mora, E.; Peralta, AM. (2017). Stability of derivations under weak-2-local continuous perturbations. Aequationes Mathematicae. 91(1):99-114. https://doi.org/10.1007/s00010-016-0438-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00010-016-0438-7 | es_ES |
dc.description.upvformatpinicio | 99 | es_ES |
dc.description.upvformatpfin | 114 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 91 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\324909 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | European Regional Development Fund | |
dc.contributor.funder | Junta de Andalucía | |
dc.description.references | Akemann C.A., Johnson B.E.: Derivations of non-separable C*-algebras. J. Funct. Anal. 33, 311–331 (1979) | es_ES |
dc.description.references | Alexander J.: Compact Banach algebras. Proc. London Math. Soc. 18, 1–18 (1968) | es_ES |
dc.description.references | Aupetit B.: A Primer on Spectral Theory (Universitext). Springer, New York (1991) | es_ES |
dc.description.references | Ayupov, Sh., Arzikulov, F.N.: 2-Local derivations on algebras of matrix-valued functions on a compact. (2015) (preprint) arXiv:1509.05701v1 | es_ES |
dc.description.references | Ayupov Sh., Kudaybergenov K.K.: 2-local derivations on von Neumann algebras. Positivity 19(3), 445–455 (2015) doi: 10.1007/s11117-014-0307-3 | es_ES |
dc.description.references | Cabello J.C., Peralta A.M.: Weak-2-local symmetric maps on C*-algebras. Linear Algebra Appl. 494, 32–43 (2016) doi: 10.1016/j.laa.2015.12.024 | es_ES |
dc.description.references | Cabello, J.C., Peralta, A.M.: On a generalized Šemrl’s theorem for weak-2-local derivations on B(H). Banach J. Math. Anal. (to appear) arXiv:1511.07987v2 | es_ES |
dc.description.references | Essaleh A.B.A., Peralta A.M., Ramírez M.I.: Weak-local derivations and homomorphisms on C*-algebras. Linear Multilinear Algebra 64(2), 169–186 (2016). doi: 10.1080/03081087.2015.1028320 | es_ES |
dc.description.references | Johnson, B.E.: Cohomology in Banach algebras, vol. 127. Memoirs of the American Mathematical Society, Providence (1972) | es_ES |
dc.description.references | Johnson B.E.: Local derivations on C*-algebras are derivations. Trans. Amer. Math. Soc. 353, 313–325 (2001) | es_ES |
dc.description.references | Kadison R.V.: Derivations of operator algebras. Ann. Math. 83(2), 280–293 (1966) | es_ES |
dc.description.references | Kadison R.V.: Local derivations. J. Algebra 130, 494–509 (1990) | es_ES |
dc.description.references | Kadison R.V., Lance E.C., Ringrose J.R.: Derivations and automorphisms of operator algebras II. J. Funct. Anal. 1, 204–221 (1947) | es_ES |
dc.description.references | Niazi M., and Peralta, A.M.: Weak-2-local derivations on $${\mathbb{M}_n}$$ M n . FILOMAT (to appear) | es_ES |
dc.description.references | Niazi M., Peralta A.M.: Weak-2-local *-derivations on B(H) are linear *-derivations. Linear Algebra Appl. 487, 276–300 (2015) | es_ES |
dc.description.references | Ringrose J.R.: Automatic continuity of derivations of operator algebras. J. London Math. Soc. (2) 5, 432–438 (1972) | es_ES |
dc.description.references | Runde, V.: Lectures on Amenability. Lecture Notes in Mathematics, vol. 1774. Springer, Berlin (2002) | es_ES |
dc.description.references | Sakai S.: On a conjecture of Kaplansky. Tohoku Math. J. 12, 31–33 (1960) | es_ES |
dc.description.references | Sakai S.: C*-algebras and W*-algebras. Springer, Berlin (1971) | es_ES |
dc.description.references | Šemrl P.: Local automorphisms and derivations on B(H). Proc. Amer. Math. Soc. 125, 2677–2680 (1997) | es_ES |
dc.description.references | Stampfli J.G.: The norm of a derivation. Pac. J. Math. 33(3), 737–747 (1970) | es_ES |
dc.description.references | Takesaki M.: Theory of operator algebras I. Springer, Berlin (1979) | es_ES |