Mostrar el registro sencillo del ítem
dc.contributor.author | Mathieu, Yannick | es_ES |
dc.contributor.author | Sauvanaud, Laurent L.A. | es_ES |
dc.contributor.author | Humphreys, Len | es_ES |
dc.contributor.author | Rowlands, William | es_ES |
dc.contributor.author | Maschmeyer, T. | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2018-06-01T04:28:10Z | |
dc.date.available | 2018-06-01T04:28:10Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1867-3880 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/103151 | |
dc.description.abstract | [EN] Wood chips were hydrothermally treated in near critical point water in the presence of a catalyst to yield a raw biocrude, containing a wide range of organic components. This product was subsequently distilled to remove its heaviest fraction, which tends to yield chary products if heated above 350 degrees C. The biocrude obtained has an oxygen content of 12wt% and was subsequently hydrotreated to obtain a hydrocarbon stream. Varying the hydrotreatment operating conditions and catalyst yielded a deoxygenated syncrude which quality improved with operation severity. The hydroprocessed stream produced under very mild conditions can be further upgraded in conventional refinery operations while the stream produced after more severe hydrotreatment can be mixed with conventional diesel. This proof of concept was demonstrated with commercial hydrotreating catalysts, operating between 350 and 380 degrees C, 40 to 120bar pressure and 0.5 to 1h(-1) contact time. | es_ES |
dc.description.sponsorship | The authors thank Licella for material and financial support, as well as providing the biocrude used for the hydrotreating experiments. Licella gratefully acknowledges support from the Australian Government in the form of funding as part of the Advanced Biofuels Investment Readiness Program, received through the Australian Renewable Energy Agency (ARENA). Financial support by the Spanish Government-MINECO through program "Severo Ochoa" (SEV 2012-0267), CTQ2015-70126-R (MINECO/FEDER), and by the Generalitat Valenciana through the Prometeo program (PROMETEOII/2013/011) is also acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | ChemCatChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biofuel | es_ES |
dc.subject | Biomass valorization | es_ES |
dc.subject | Hydrotreatment | es_ES |
dc.subject | Llignocellulose | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Production of High Quality Syncrude from Lignocellulosic Biomass | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cctc.201601677 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-70126-R/ES/DISEÑO DE CATALIZADORES ZEOLITICOS PARA LA OPTIMIZACION DE PROCESOS QUIMICOS DE INTERES INDUSTRIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F011/ES/Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas (PROMETEO)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Mathieu, Y.; Sauvanaud, LL.; Humphreys, L.; Rowlands, W.; Maschmeyer, T.; Corma Canós, A. (2017). Production of High Quality Syncrude from Lignocellulosic Biomass. ChemCatChem. 9(9):1574-1578. https://doi.org/10.1002/cctc.201601677 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1002/cctc.201601677 | es_ES |
dc.description.upvformatpinicio | 1574 | es_ES |
dc.description.upvformatpfin | 1578 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.pasarela | S\358643 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Australian Renewable Energy Agency | es_ES |
dc.contributor.funder | European Regional Development Fund | |
dc.description.references | Huber, G. W., & Corma, A. (2007). Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angewandte Chemie International Edition, 46(38), 7184-7201. doi:10.1002/anie.200604504 | es_ES |
dc.description.references | Huber, G. W., & Corma, A. (2007). Synergien zwischen Bio- und Ölraffinerien bei der Herstellung von Biomassetreibstoffen. Angewandte Chemie, 119(38), 7320-7338. doi:10.1002/ange.200604504 | es_ES |
dc.description.references | U.S. Department of Energy 2016.2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy Volume 1: Economic Availability of Feedstocks. M. H. Langholtz B. J. Stokes L. M. Eaton (Leads) ORNL/TM-2016/160. Oak Ridge National Laboratory Oak Ridge TN. 448p. DOI:10.2172/1271651. | es_ES |
dc.description.references | Klein-Marcuschamer, D., & Blanch, H. W. (2015). Renewable fuels from biomass: Technical hurdles and economic assessment of biological routes. AIChE Journal, 61(9), 2689-2701. doi:10.1002/aic.14755 | es_ES |
dc.description.references | Maitlis, P. M., & de Klerk, A. (2013). New Directions, Challenges, and Opportunities. Greener Fischer-Tropsch Processes for Fuels and Feedstocks, 337-358. doi:10.1002/9783527656837.ch16 | es_ES |
dc.description.references | De Miguel Mercader, F., Groeneveld, M. J., Kersten, S. R. A., Geantet, C., Toussaint, G., Way, N. W. J., … Hogendoorn, K. J. A. (2011). Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units. Energy & Environmental Science, 4(3), 985. doi:10.1039/c0ee00523a | es_ES |
dc.description.references | Goudriaan, F., & Peferoen, D. G. R. (1990). Liquid fuels from biomass via a hydrothermal process. Chemical Engineering Science, 45(8), 2729-2734. doi:10.1016/0009-2509(90)80164-a | es_ES |
dc.description.references | Peterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, Jr., M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy & Environmental Science, 1(1), 32. doi:10.1039/b810100k | es_ES |
dc.description.references | Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328-2342. doi:10.1016/j.energy.2011.03.013 | es_ES |
dc.description.references | Oasmaa, A., & Czernik, S. (1999). Fuel Oil Quality of Biomass Pyrolysis OilsState of the Art for the End Users. Energy & Fuels, 13(4), 914-921. doi:10.1021/ef980272b | es_ES |
dc.description.references | Elliott, D. C., Biller, P., Ross, A. B., Schmidt, A. J., & Jones, S. B. (2015). Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresource Technology, 178, 147-156. doi:10.1016/j.biortech.2014.09.132 | es_ES |
dc.description.references | http://www.licella.com.au/commercial-demonstration-plant/. | es_ES |
dc.description.references | L. J.Humphreys (Ignite Energy Resources Pty Ltd) WO Pat. 2011/032202(A1) 2011. | es_ES |
dc.description.references | T.Maschmeyer L. J.Humphreys (Licella Pty Ltd) WO Pat. 2011/123897(A1) 2011. | es_ES |
dc.description.references | Wang, W., Yang, Y., Luo, H., Hu, T., & Liu, W. (2011). Amorphous Co–Mo–B catalyst with high activity for the hydrodeoxygenation of bio-oil. Catalysis Communications, 12(6), 436-440. doi:10.1016/j.catcom.2010.11.001 | es_ES |
dc.description.references | Monnier, J., Sulimma, H., Dalai, A., & Caravaggio, G. (2010). Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Applied Catalysis A: General, 382(2), 176-180. doi:10.1016/j.apcata.2010.04.035 | es_ES |
dc.description.references | Kubička, D., & Kaluža, L. (2010). Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Applied Catalysis A: General, 372(2), 199-208. doi:10.1016/j.apcata.2009.10.034 | es_ES |
dc.description.references | Huber, G. W., O’Connor, P., & Corma, A. (2007). Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Applied Catalysis A: General, 329, 120-129. doi:10.1016/j.apcata.2007.07.002 | es_ES |
dc.description.references | Anthonykutty, J. M., Van Geem, K. M., De Bruycker, R., Linnekoski, J., Laitinen, A., Räsänen, J., … Lehtonen, J. (2013). Value Added Hydrocarbons from Distilled Tall Oil via Hydrotreating over a Commercial NiMo Catalyst. Industrial & Engineering Chemistry Research, 52(30), 10114-10125. doi:10.1021/ie400790v | es_ES |
dc.description.references | H. P.Ruyter J. H. J.Annee (Shell Oil Co) US Pat. no. 4670613A 1987. | es_ES |
dc.description.references | S. Jones et al. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading PNNL report 23227 2014. | es_ES |
dc.description.references | Baker, E. G., & Elliott, D. C. (1988). Catalytic Hydrotreating of Biomass-Derived Oils. Pyrolysis Oils from Biomass, 228-240. doi:10.1021/bk-1988-0376.ch021 | es_ES |
dc.description.references | Kubička, D., & Horáček, J. (2011). Deactivation of HDS catalysts in deoxygenation of vegetable oils. Applied Catalysis A: General, 394(1-2), 9-17. doi:10.1016/j.apcata.2010.10.034 | es_ES |