Acik M, Lee G, Mattevi C et al (2011) The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J Phys Chem C 115:1981–19761
Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50:1853–1860
Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288
[+]
Acik M, Lee G, Mattevi C et al (2011) The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J Phys Chem C 115:1981–19761
Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50:1853–1860
Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288
Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A (2012) The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J Mater Chem 22:13773–13781
Bae S, Kim H, Lee Y et al (2010) Roll to- roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578
Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669
Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769
Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Soc 130:10697–10701
Buchsteiner A, Lerf A, Pieper J (2006) Water dynamics in graphite oxide investigated with neutron scattering. J Phys Chem B 110:22328
Choi BG, Park H, Park TJ et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4:2910–2918
Cote LJ, Silva RC, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032
Dai B, Fu L, Liao L et al (2011) High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res 4:434–439
Davies MB, Austin J, Partridge DA (1991) Vitamin C: its chemistry and biochemistry. Royal Society of Chemistry, Cambridge
Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 23:610–613
Fan FRF, Park S, Zhu Y, Ruoff RS, Bard AJ (2009) Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles. J Am Chem Soc 131:937–939
Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S et al (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432
Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401–187405
Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C 115:17009–17019
Hancock RD, Viola R (2005) Biosynthesis and catabolism of l-ascorbic acid in plants. Crit Rev Plant Sci 24:167–188
Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568
Hontoria-Lucas C, Lopez-Peinado AJ, Loepz-Gonzalez JDD et al (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592
Jeong HK, Lee YP, Lahaye RJWE et al (2008) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130:1362–1366
Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710
Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105
Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375
Kumar P, Subrahmanyam KS, Rao CNR (2011a) Graphene produced by radiation-induced reduction of graphene oxide. Intl J Nanosci 10:559–566
Kumar P, Panchakarla LS, Rao CNR (2011b) Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons. Nanoscale 3:2127–2129
Kumar P, Das B, Chitara B et al (2012) Novel radiation induced properties of graphene and related materials. Macromol Chem Phys 213:1146–1163
Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388
Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170–1171
Li J, Liu CY (2010) Ag/Graphene heterostructures: synthesis, characterization and optical properties. Eur J Inorg Chem 8:1244–1248
Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105
Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314
Maitra U, Matte HSRR, Kumar P, Rao CNR (2012) Strategies for the synthesis of graphene, graphene nanoribbons, nanoscrolls and related materials. Chimia 66:941–948
Mei XG, Ouyang JY (2011) Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49:5389–5397
Mkhoyan K, Contryman A, Silcox J, Stewart D, Eda G, Mattevi C, Miller S, Chhowalla M (2009) Atomic and electronic structure of graphene-oxide. Nano Lett 9:1058–1063
Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308
Park S, Lee KS, Bozoklu G et al (2008) Graphene oxide papers modified by divalent ions enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578
Park S, An J, Jung I et al (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597
Park HJ, Meyer J, Roth S, Skákalová V (2010) Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48:1088–1094
Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49:3019–3023
Patil AJ, Vickery JL, Scott TB, Mann S (2009) Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv Mater 21:3159–3164
Stankovich S, Piner RD, Chen X, Wu N, Nguyen SBT, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158
Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR (2009) Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C 113:4257–4259
Szabó T, Tombacz E, Illes E, Dékány I (2006) Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 44:537–545
Wu JS, Pisula W, Mullen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747
Wu H, Zhao WF, Hu HW, Chen GH (2011) One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J Mater Chem 21:8626–8632
Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857
Yin Z, Wu S, Zhou X et al (2010) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6:307–312
Zhang L, Liang J, Huang Y, Ma Y, Wang Y, Chen YS (2009) Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 47:3365–3380
Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via l-ascorbic acid. Chem Comm 46:1112–1114
Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Hydrothermal dehydration for the ‘green’ reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956
[-]