Mostrar el registro sencillo del ítem
dc.contributor.author | Bayart, Frederic | es_ES |
dc.contributor.author | Defant, Andreas | es_ES |
dc.contributor.author | Frerick, Leonhard | es_ES |
dc.contributor.author | Maestre, Manuel | es_ES |
dc.contributor.author | Sevilla Peris, Pablo | es_ES |
dc.date.accessioned | 2018-06-03T04:23:33Z | |
dc.date.available | 2018-06-03T04:23:33Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0025-5831 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/103256 | |
dc.description.abstract | [EN] Let H-infinity be the set of all ordinary Dirichlet series D = Sigma(n) a(n)(n-1) ann-s representing bounded holomorphic functions on the right half plane. A completely multiplicative sequence (b(n)) of complex numbers is said to be an l(1)-multiplier for H-infinity whenever Sigma(n vertical bar)a(n)b(n vertical bar) < infinity for every D is an element of H-infinity. We study the problem of describing such sequences (b(n)) in terms of the asymptotic decay of the subsequence (b(pj)), where p(j) denotes the j th prime number. Given a completely multiplicative sequence b = (b(n)) we prove (among other results): b is an l(1)-multiplier for H-infinity provided vertical bar b(pj)vertical bar < 1 for all j and (lim(n)) over bar 1/log(n) Sigma(n)(j=1) b(p j)*(2) < 1, and conversely, if b is an l(1)-multiplier for H-infinity, then vertical bar b(pj)vertical bar < 1 for all j and (lim(n)) over bar 1/log(n) Sigma(n)(j=1) b(p j)*(2) <= 1 (here b* stands for the decreasing rearrangement of b). Following an ingenious idea of Harald Bohr it turns out that this problem is intimately related with the question of characterizing those sequences z in the infinite dimensional polydisk D-infinity (the open unit ball of l(infinity)) for which every bounded and holomorphic function f on D-infinity has an absolutely convergent monomial series expansion Sigma(alpha) partial derivative alpha f (0)/alpha! z alpha. Moreover, we study analogous problems in Hardy spaces of Dirichlet series and Hardy spaces of functions on the infinite dimensional polytorus T-infinity. | es_ES |
dc.description.sponsorship | The second, fourth and fifth authors were supported by MINECO and FEDER Project MTM2014-57838-C2-2-P. The fourth author was also supported by PrometeoII/2013/013. The fifth author was also supported by project SP-UPV20120700. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Mathematische Annalen | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00208-016-1511-1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-57838-C2-2-P/ES/ANALISIS COMPLEJO EN DIMENSION FINITA E INFINITA. GEOMETRIA DE ESPACIOS DE BANACH/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bayart, F.; Defant, A.; Frerick, L.; Maestre, M.; Sevilla Peris, P. (2017). Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables. Mathematische Annalen. 368(1-2):837-876. https://doi.org/10.1007/s00208-016-1511-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00208-016-1511-1 | es_ES |
dc.description.upvformatpinicio | 837 | es_ES |
dc.description.upvformatpfin | 876 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 368 | es_ES |
dc.description.issue | 1-2 | es_ES |
dc.relation.pasarela | S\359106 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Aleman, A., Olsen, J.-F., Saksman, E.: Fatou and brother Riesz theorems in the infinite-dimensional polydisc. arXiv:1512.01509 | es_ES |
dc.description.references | Balasubramanian, R., Calado, B., Queffélec, H.: The Bohr inequality for ordinary Dirichlet series. Studia Math. 175(3), 285–304 (2006) | es_ES |
dc.description.references | Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002) | es_ES |
dc.description.references | Bayart, F., Pellegrino, D., Seoane-Sepúlveda, J.B.: The Bohr radius of the $$n$$ n -dimensional polydisk is equivalent to $$\sqrt{(\log n)/n}$$ ( log n ) / n . Adv. Math. 264:726–746 (2014) | es_ES |
dc.description.references | Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. 32(3), 600–622 (1931) | es_ES |
dc.description.references | Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen $$\sum \,\frac{a_n}{n^s}$$ ∑ a n n s . Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 441–488 (1913) | es_ES |
dc.description.references | Bohr, H.: Über die gleichmäßige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1913) | es_ES |
dc.description.references | Cole, B.J., Gamelin., T.W.: Representing measures and Hardy spaces for the infinite polydisk algebra. Proc. Lond. Math. Soc. 53(1), 112–142 (1986) | es_ES |
dc.description.references | Davie, A.M., Gamelin, T.W.: A theorem on polynomial-star approximation. Proc. Am. Math. Soc. 106(2), 351–356 (1989) | es_ES |
dc.description.references | de la Bretèche, R.: Sur l’ordre de grandeur des polynômes de Dirichlet. Acta Arith. 134(2), 141–148 (2008) | es_ES |
dc.description.references | Defant, A., Frerick, L., Ortega-Cerdà, J., Ounaïes, M., Seip, K.: The Bohnenblust–Hille inequality for homogeneous polynomials is hypercontractive. Ann. Math. 174(1), 485–497 (2011) | es_ES |
dc.description.references | Defant, A., García, D., Maestre, M.: New strips of convergence for Dirichlet series. Publ. Mat. 54(2), 369–388 (2010) | es_ES |
dc.description.references | Defant, A., García, D., Maestre, M., Pérez-García, D.: Bohr’s strip for vector valued Dirichlet series. Math. Ann. 342(3), 533–555 (2008) | es_ES |
dc.description.references | Defant, A., Maestre, M., Prengel, C.: Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables. J. Reine Angew. Math. 634, 13–49 (2009) | es_ES |
dc.description.references | Dineen, S.: Complex Analysis on Infinite-dimensional Spaces. Springer Monographs in Mathematics. Springer-Verlag London Ltd, London (1999) | es_ES |
dc.description.references | Floret, K.: Natural norms on symmetric tensor products of normed spaces. Note Mat. 17(153–188), 1997 (1999) | es_ES |
dc.description.references | Harris, L. A.: Bounds on the derivatives of holomorphic functions of vectors. In: Analyse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), pp. 145–163. Actualités Aci. Indust., No. 1367. Hermann, Paris (1975) | es_ES |
dc.description.references | Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in $$L^2(0,1)$$ L 2 ( 0 , 1 ) . Duke Math. J. 86(1), 1–37 (1997) | es_ES |
dc.description.references | Helson, H., Lowdenslager, D.: Prediction theory and Fourier series in several variables. Acta Math. 99, 165–202 (1958) | es_ES |
dc.description.references | Hibert, D.: Gesammelte Abhandlungen (Band 3). Verlag von Julius Springer, Berlin (1935) | es_ES |
dc.description.references | Hilbert, D.: Wesen und Ziele einer Analysis der unendlichvielen unabhängigen Variablen. Rend. del Circolo Mat. di Palermo 27, 59–74 (1909) | es_ES |
dc.description.references | Kahane, J.-P.: Some Random Series of Functions, Volume 5 of Cambridge Studies in Advanced Mathematics, second edn. Cambridge University Press, Cambridge (1985) | es_ES |
dc.description.references | Konyagin, S.V., Queffélec, H.: The translation $$\frac{1}{2}$$ 1 2 in the theory of Dirichlet series. Real Anal. Exchange 27(1):155–175 (2001/2002) | es_ES |
dc.description.references | Maurizi, B., Queffélec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16(5), 676–692 (2010) | es_ES |
dc.description.references | Queffélec, H.: H. Bohr’s vision of ordinary Dirichlet series; old and new results. J. Anal. 3, 43–60 (1995) | es_ES |
dc.description.references | Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet Series. HRI Lecture Notes Series, New Delhi (2013) | es_ES |
dc.description.references | Rudin, W.: Function Theory in Polydisks. W. A. Benjamin Inc, New York (1969) | es_ES |
dc.description.references | Toeplitz, O.: Über eine bei den Dirichletschen Reihen auftretende Aufgabe aus der Theorie der Potenzreihen von unendlichvielen Veränderlichen. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, pp. 417–432 (1913) | es_ES |
dc.description.references | Weissler, F.B.: Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Funct. Anal. 37(2), 218–234 (1980) | es_ES |
dc.description.references | Wojtaszczyk, P.: Banach Spaces for Analysts, Volume 25 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1991) | es_ES |