- -

Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bayart, Frederic es_ES
dc.contributor.author Defant, Andreas es_ES
dc.contributor.author Frerick, Leonhard es_ES
dc.contributor.author Maestre, Manuel es_ES
dc.contributor.author Sevilla Peris, Pablo es_ES
dc.date.accessioned 2018-06-03T04:23:33Z
dc.date.available 2018-06-03T04:23:33Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0025-5831 es_ES
dc.identifier.uri http://hdl.handle.net/10251/103256
dc.description.abstract [EN] Let H-infinity be the set of all ordinary Dirichlet series D = Sigma(n) a(n)(n-1) ann-s representing bounded holomorphic functions on the right half plane. A completely multiplicative sequence (b(n)) of complex numbers is said to be an l(1)-multiplier for H-infinity whenever Sigma(n vertical bar)a(n)b(n vertical bar) < infinity for every D is an element of H-infinity. We study the problem of describing such sequences (b(n)) in terms of the asymptotic decay of the subsequence (b(pj)), where p(j) denotes the j th prime number. Given a completely multiplicative sequence b = (b(n)) we prove (among other results): b is an l(1)-multiplier for H-infinity provided vertical bar b(pj)vertical bar < 1 for all j and (lim(n)) over bar 1/log(n) Sigma(n)(j=1) b(p j)*(2) < 1, and conversely, if b is an l(1)-multiplier for H-infinity, then vertical bar b(pj)vertical bar < 1 for all j and (lim(n)) over bar 1/log(n) Sigma(n)(j=1) b(p j)*(2) <= 1 (here b* stands for the decreasing rearrangement of b). Following an ingenious idea of Harald Bohr it turns out that this problem is intimately related with the question of characterizing those sequences z in the infinite dimensional polydisk D-infinity (the open unit ball of l(infinity)) for which every bounded and holomorphic function f on D-infinity has an absolutely convergent monomial series expansion Sigma(alpha) partial derivative alpha f (0)/alpha! z alpha. Moreover, we study analogous problems in Hardy spaces of Dirichlet series and Hardy spaces of functions on the infinite dimensional polytorus T-infinity. es_ES
dc.description.sponsorship The second, fourth and fifth authors were supported by MINECO and FEDER Project MTM2014-57838-C2-2-P. The fourth author was also supported by PrometeoII/2013/013. The fifth author was also supported by project SP-UPV20120700. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Mathematische Annalen es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00208-016-1511-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-57838-C2-2-P/ES/ANALISIS COMPLEJO EN DIMENSION FINITA E INFINITA. GEOMETRIA DE ESPACIOS DE BANACH/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bayart, F.; Defant, A.; Frerick, L.; Maestre, M.; Sevilla Peris, P. (2017). Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables. Mathematische Annalen. 368(1-2):837-876. https://doi.org/10.1007/s00208-016-1511-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00208-016-1511-1 es_ES
dc.description.upvformatpinicio 837 es_ES
dc.description.upvformatpfin 876 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 368 es_ES
dc.description.issue 1-2 es_ES
dc.relation.pasarela S\359106 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Aleman, A., Olsen, J.-F., Saksman, E.: Fatou and brother Riesz theorems in the infinite-dimensional polydisc. arXiv:1512.01509 es_ES
dc.description.references Balasubramanian, R., Calado, B., Queffélec, H.: The Bohr inequality for ordinary Dirichlet series. Studia Math. 175(3), 285–304 (2006) es_ES
dc.description.references Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002) es_ES
dc.description.references Bayart, F., Pellegrino, D., Seoane-Sepúlveda, J.B.: The Bohr radius of the $$n$$ n -dimensional polydisk is equivalent to $$\sqrt{(\log n)/n}$$ ( log n ) / n . Adv. Math. 264:726–746 (2014) es_ES
dc.description.references Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. 32(3), 600–622 (1931) es_ES
dc.description.references Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen $$\sum \,\frac{a_n}{n^s}$$ ∑ a n n s . Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 441–488 (1913) es_ES
dc.description.references Bohr, H.: Über die gleichmäßige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1913) es_ES
dc.description.references Cole, B.J., Gamelin., T.W.: Representing measures and Hardy spaces for the infinite polydisk algebra. Proc. Lond. Math. Soc. 53(1), 112–142 (1986) es_ES
dc.description.references Davie, A.M., Gamelin, T.W.: A theorem on polynomial-star approximation. Proc. Am. Math. Soc. 106(2), 351–356 (1989) es_ES
dc.description.references de la Bretèche, R.: Sur l’ordre de grandeur des polynômes de Dirichlet. Acta Arith. 134(2), 141–148 (2008) es_ES
dc.description.references Defant, A., Frerick, L., Ortega-Cerdà, J., Ounaïes, M., Seip, K.: The Bohnenblust–Hille inequality for homogeneous polynomials is hypercontractive. Ann. Math. 174(1), 485–497 (2011) es_ES
dc.description.references Defant, A., García, D., Maestre, M.: New strips of convergence for Dirichlet series. Publ. Mat. 54(2), 369–388 (2010) es_ES
dc.description.references Defant, A., García, D., Maestre, M., Pérez-García, D.: Bohr’s strip for vector valued Dirichlet series. Math. Ann. 342(3), 533–555 (2008) es_ES
dc.description.references Defant, A., Maestre, M., Prengel, C.: Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables. J. Reine Angew. Math. 634, 13–49 (2009) es_ES
dc.description.references Dineen, S.: Complex Analysis on Infinite-dimensional Spaces. Springer Monographs in Mathematics. Springer-Verlag London Ltd, London (1999) es_ES
dc.description.references Floret, K.: Natural norms on symmetric tensor products of normed spaces. Note Mat. 17(153–188), 1997 (1999) es_ES
dc.description.references Harris, L. A.: Bounds on the derivatives of holomorphic functions of vectors. In: Analyse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), pp. 145–163. Actualités Aci. Indust., No. 1367. Hermann, Paris (1975) es_ES
dc.description.references Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in $$L^2(0,1)$$ L 2 ( 0 , 1 ) . Duke Math. J. 86(1), 1–37 (1997) es_ES
dc.description.references Helson, H., Lowdenslager, D.: Prediction theory and Fourier series in several variables. Acta Math. 99, 165–202 (1958) es_ES
dc.description.references Hibert, D.: Gesammelte Abhandlungen (Band 3). Verlag von Julius Springer, Berlin (1935) es_ES
dc.description.references Hilbert, D.: Wesen und Ziele einer Analysis der unendlichvielen unabhängigen Variablen. Rend. del Circolo Mat. di Palermo 27, 59–74 (1909) es_ES
dc.description.references Kahane, J.-P.: Some Random Series of Functions, Volume 5 of Cambridge Studies in Advanced Mathematics, second edn. Cambridge University Press, Cambridge (1985) es_ES
dc.description.references Konyagin, S.V., Queffélec, H.: The translation $$\frac{1}{2}$$ 1 2 in the theory of Dirichlet series. Real Anal. Exchange 27(1):155–175 (2001/2002) es_ES
dc.description.references Maurizi, B., Queffélec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16(5), 676–692 (2010) es_ES
dc.description.references Queffélec, H.: H. Bohr’s vision of ordinary Dirichlet series; old and new results. J. Anal. 3, 43–60 (1995) es_ES
dc.description.references Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet Series. HRI Lecture Notes Series, New Delhi (2013) es_ES
dc.description.references Rudin, W.: Function Theory in Polydisks. W. A. Benjamin Inc, New York (1969) es_ES
dc.description.references Toeplitz, O.: Über eine bei den Dirichletschen Reihen auftretende Aufgabe aus der Theorie der Potenzreihen von unendlichvielen Veränderlichen. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, pp. 417–432 (1913) es_ES
dc.description.references Weissler, F.B.: Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Funct. Anal. 37(2), 218–234 (1980) es_ES
dc.description.references Wojtaszczyk, P.: Banach Spaces for Analysts, Volume 25 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1991) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem