- -

Structural shape optimization using Cartesian grids and automatic h-adaptive mesh projection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structural shape optimization using Cartesian grids and automatic h-adaptive mesh projection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marco, Onofre es_ES
dc.contributor.author Ródenas, J.J. es_ES
dc.contributor.author Albelda Vitoria, José es_ES
dc.contributor.author Nadal, Enrique es_ES
dc.contributor.author Tur Valiente, Manuel es_ES
dc.date.accessioned 2018-06-03T04:28:27Z
dc.date.available 2018-06-03T04:28:27Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1615-147X es_ES
dc.identifier.uri http://hdl.handle.net/10251/103270
dc.description.abstract [EN] We present a novel approach to 3D structural shape optimization that leans on an Immersed Boundary Method. A boundary tracking strategy based on evaluating the intersections between a fixed Cartesian grid and the evolving geometry sorts elements as internal, external and intersected. The integration procedure used by the NURBS-Enhanced Finite Element Method accurately accounts for the nonconformity between the fixed embedding discretization and the evolving structural shape, avoiding the creation of a boundary-fitted mesh for each design iteration, yielding in very efficient mesh generation process. A Cartesian hierarchical data structure improves the efficiency of the analyzes, allowing for trivial data sharing between similar entities or for an optimal reordering of thematrices for the solution of the system of equations, among other benefits. Shape optimization requires the sufficiently accurate structural analysis of a large number of different designs, presenting the computational cost for each design as a critical issue. The information required to create 3D Cartesian h- adapted mesh for new geometries is projected from previously analyzed geometries using shape sensitivity results. Then, the refinement criterion permits one to directly build h-adapted mesh on the new designs with a specified and controlled error level. Several examples are presented to show how the techniques here proposed considerably improve the computational efficiency of the optimization process. es_ES
dc.description.sponsorship The authors wish to thank the Spanish Ministerio de Economia y Competitividad for the financial support received through the project DPI2013-46317-R and the FPI program (BES-2011-044080), and the Generalitat Valenciana through the project PROMETEO/2016/007. en_EN
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Structural and Multidisciplinary Optimization es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cartesian grids es_ES
dc.subject H-refinement es_ES
dc.subject Shape optimization es_ES
dc.subject NEFEM es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Structural shape optimization using Cartesian grids and automatic h-adaptive mesh projection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00158-017-1875-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-044080/ES/BES-2011-044080/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-46317-R/ES/PERSONALIZACION DE IMPLANTES MEDIANTE MODELOS DE ELEMENTOS FINITOS A PARTIR DE IMAGENES MEDICAS 3D/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-12-06 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Marco, O.; Ródenas, J.; Albelda Vitoria, J.; Nadal, E.; Tur Valiente, M. (2017). Structural shape optimization using Cartesian grids and automatic h-adaptive mesh projection. Structural and Multidisciplinary Optimization. 1-21. https://doi.org/10.1007/s00158-017-1875-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00158-017-1875-1 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\350036 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references MATLAB version 8.3.0.532 (R2014a) (2014) Documentation. The Mathworks, Inc., Natick, Massachusetts es_ES
dc.description.references Abel JF, Shephard MS (1979) An algorithm for multipoint constraints in finite element analysis. Int J Numer Methods Eng 14(3):464–467 es_ES
dc.description.references Amestoy P, Davis T, Duff I (1996) An approximate minimum degree ordering algorithm. SIAM J Matrix Anal Appl 17(4):886–905 es_ES
dc.description.references Barth W, Stürzlinger W (1993) Efficient ray tracing for Bezier and B-spline surfaces. Comput Graph 17 (4):423–430 es_ES
dc.description.references Bennett J A, Botkin M E (1985) Structural shape optimization with geometric problem description and adaptive mesh refinement. AIAA J 23(3):459–464 es_ES
dc.description.references Braibant V, Fleury C (1984) Shape optimal design using b-splines. Comput Methods Appl Mech Eng 44 (3):247–267 es_ES
dc.description.references Bugeda G, Oliver J (1993) A general methodology for structural shape optimization problems using automatic adaptive remeshing. Int J Numer Methods Eng 36(18):3161–3185 es_ES
dc.description.references Bugeda G, Ródenas J J, Oñate E (2008) An integration of a low cost adaptive remeshing strategy in the solution of structural shape optimization problems using evolutionary methods. Comput Struct 86(13–14):1563–1578 es_ES
dc.description.references Chang K, Choi K K (1992) A geometry-based parameterization method for shape design of elastic solids. Mech Struct Mach 20(2):215–252 es_ES
dc.description.references Cho S, Ha S H (2009) Isogeometric shape design optimization: exact geometry and enhanced sensitivity. Struct Multidiscip Optim 38(1):53–70 es_ES
dc.description.references Belegundu D, Zhang YMS, Salagame R (1991) The natural approach for shape optimization with mesh distortion control. Tech. rep., Penn State University es_ES
dc.description.references Davis T A, Gilbert J R, Larimore S, Ng E (2004) An approximate column minimum degree ordering algorithm. ACM Trans Math Softw 30(3):353–376 es_ES
dc.description.references Doctor L J, Torborg J G (1981) Display techniques for octree-encoded objects. IEEE Comput Graph Appl 1(3):29–38 es_ES
dc.description.references Dunning P D, Kim H A, Mullineux G (2011) Investigation and improvement of sensitivity computation using the area-fraction weighted fixed grid FEM and structural optimization. Finite Elem Anal Des 47(8):933–941 es_ES
dc.description.references Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197(45-48):3768–3782 es_ES
dc.description.references Escobar J M, Montenegro R, Rodríguez E, Cascón J M (2014) The meccano method for isogeometric solid modeling and applications. Eng Comput 30(3):331–343 es_ES
dc.description.references Farhat C, Lacour C, Rixen D (1998) Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm. Int J Numer Methods Eng 43(6):997–1016 es_ES
dc.description.references Fries T P, Omerović S (2016) Higher-order accurate integration of implicit geometries. Int J Numer Methods Eng 106(5):323–371 es_ES
dc.description.references Fuenmayor F J, Oliver J L (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element mehod. Int J Numer Methods Eng 39(23):4039–4061 es_ES
dc.description.references Fuenmayor F J, Oliver J L, Ródenas J J (1997) Extension of the Zienkiewicz-Zhu error estimator to shape sensitivity analysis. Int J Numer Methods Eng 40(8):1413–1433 es_ES
dc.description.references García-Ruíz M J, Steven G P (1999) Fixed grid finite elements in elasticity problems. Eng Comput 16 (2):145–164 es_ES
dc.description.references Gill P, Murray W, Saunders M, Wright M (1984) Procedures for optimization problems with a mixture of bounds and general linear constraints. ACM Trans Math Software 10:282–298 es_ES
dc.description.references González-Estrada O A, Nadal E, Ródenas J J, Kerfriden P, Bordas S P A, Fuenmayor F J (2014) Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Comput Mech 53(5):957–976 es_ES
dc.description.references Ha S H, Choi K K, Cho S (2010) Numerical method for shape optimization using T-spline based isogeometric method. Struct Multidiscip Optim 42(3):417–428 es_ES
dc.description.references Haftka R T, Grandhi R V (1986) Structural shape optimization: A survey. Comput Methods Appl Mech Eng 57(1):91–106 es_ES
dc.description.references Haslinger J, Jedelsky D (1996) Genetic algorithms and fictitious domain based approaches in shape optimization. Struc Optim 12:257–264 es_ES
dc.description.references Hughes T J R, Cottrell J A, Bazilevs Y (2005) Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement. Comput Methods Appl Mech Eng 194:4135–4195 es_ES
dc.description.references Jackins C L, Tanimoto S L (1980) Oct-tree and their use in representing three-dimensional objects. Comput Graphics Image Process 14(3):249–270 es_ES
dc.description.references Kajiya J T (1982) Ray Tracing Parametric Patches. SIGGRAPH Comput Graph 16(3):245–254 es_ES
dc.description.references van Keulen F, Haftka R T, Kim N (2005) Review of options for structural design sensitivity analysis. Part I: linear systems. Comput Methods Appl Mech Eng 194(30-33):3213–3243 es_ES
dc.description.references Kibsgaard S (1992) Sensitivity analysis-the basis for optimization. Int J Numer Methods Eng 34(3):901–932 es_ES
dc.description.references Kikuchi N, Chung K Y, Torigaki T, Taylor J E (1986) Adaptive finite element methods for shape optimization of linearly elastic structures. Comput Methods Appl Mech Eng 57(1):67–89 es_ES
dc.description.references Kim N H, Chang Y (2005) Eulerian shape design sensitivity analysis and optimization with a fixed grid. Comput Methods Appl Mech Eng 194(30–33):3291–3314 es_ES
dc.description.references Kudela L, Zander N, Kollmannsberger S, Rank E (2016) Smart octrees: Accurately integrating discontinuous functions in 3d. Comput Methods Appl Mech Eng 306(1):406–426 es_ES
dc.description.references Kunisch K, Peichl G (1996) Numerical gradients for shape optimization based on embedding domain techniques. Comput Optim 18:95–114 es_ES
dc.description.references Li K, Qian X (2011) Isogeometric analysis and shape optimization via boundary integral. Computer-Aided Design 43(11):1427–1437 es_ES
dc.description.references Lian H, Kerfriden P, Bordas S P A (2016) Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity. Int J Numer Methods Eng 106 (12):972–1017 es_ES
dc.description.references Liu L, Zhang Y, Hughes T J R, Scott M A, Sederberg T W (2014) Volumetric T-spline Construction using Boolean Operations. Eng Comput 30(4):425–439 es_ES
dc.description.references Marco O, Sevilla R, Zhang Y, Ródenas J J, Tur M (2015) Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. Int J Numer Methods Eng 103:445–468 es_ES
dc.description.references Marco O, Ródenas J J, Fuenmayor FJ, Tur M (2017a) An extension of shape sensitivity analysis to an immersed boundary method based on cartesian grids. Computational Mechanics Submitted es_ES
dc.description.references Marco O, Ródenas J J, Navarro-Jiménez JM, Tur M (2017b) Robust h-adaptive meshing strategy for arbitrary cad geometries in a cartesian grid framework. Computers & Structures Submitted es_ES
dc.description.references Meagher D (1980) Octree Encoding: A New Technique for the Representation, Manipulation and Display of Arbitrary 3-D Objects by Computer. Tech. Rep. IPL-TR-80-11 I, Rensselaer Polytechnic Institute es_ES
dc.description.references Moita J S, Infante J, Mota C M, Mota C A (2000) Sensitivity analysis and optimal design of geometrically non-linear laminated plates and shells. Comput Struct 76(1–3):407–420 es_ES
dc.description.references Nadal E (2014) Cartesian Grid FEM (cgFEM): High Performance h-adaptive FE Analysis with Efficient Error Control. Application to Structural Shape Optimization. PhD Thesis. Universitat Politècnica de València es_ES
dc.description.references Nadal E, Ródenas J J, Albelda J, Tur M, Tarancón J E, Fuenmayor F J (2013) Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstr Appl Anal 2013:1–19 es_ES
dc.description.references Najafi A R, Safdari M, Tortorelli D A, Geubelle P H (2015) A gradient-based shape optimization scheme using an interface-enriched generalized FEM. Comput Methods Appl Mech Eng 296:1–17 es_ES
dc.description.references Nguyen V P, Anitescu C, Bordas S P A, Rabczuk T (2015) Isogeometric analysis: An overview and computer implementation aspects. Math Comput Simul 117:89–116 es_ES
dc.description.references Nishita T, Sederberg TW, Kakimoto M (1990) Ray Tracing Trimmed Rational Surface Patches. SIGGRAPH Comput Graph 24(4):337–345 es_ES
dc.description.references Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer-Verlag, New York es_ES
dc.description.references Pandey P C, Bakshi P (1999) Analytical response sensitivity computation using hybrid finite elements. Comput Struct 71(5):525–534 es_ES
dc.description.references Parvizian J, Düster A, Rank E (2007) Finite Cell Method: h- and p- Extension for Embedded Domain Methods in Solid Mechanics. Comput Mech 41(1):121–133 es_ES
dc.description.references Peskin C S (1977) Numerical Analysis of Blood Flow in the Heart. J Comput Phys 25:220–252 es_ES
dc.description.references Poldneff M J, Rai I S, Arora J S (1993) Implementation of design sensitivity analysis for nonlinear structures. AIAA J 31(11):2137–2142 es_ES
dc.description.references Powell M (1983) Variable metric methods for constrained optimization. In: Bachem A, Grotschel M, Korte B (eds) Mathematical Programming: The State of the Art, Springer, Berlin, Heidelberg, pp 288–311 es_ES
dc.description.references Qian X (2010) Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput Methods Appl Mech Eng 199(29–32):2059–2071 es_ES
dc.description.references Riehl S, Steinmann P (2014) An integrated approach to shape optimization and mesh adaptivity based on material residual forces. Comput Methods Appl Mech Eng 278:640–663 es_ES
dc.description.references Riehl S, Steinmann P (2016) On structural shape optimization using an embedding domain discretization technique. Int J Numer Methods Eng 109(9):1315–1343 es_ES
dc.description.references Ródenas J J, Tarancón J E, Albelda J, Roda A, Fuenmayor F J (2005) Hierarchical Properties in Elements Obtained by Subdivision: a Hierarquical h-adaptivity Program. In: Díez P, Wiberg N E (eds) Adaptive Modeling and Simulation, p 2005 es_ES
dc.description.references Ródenas J J, Corral C, Albelda J, Mas J, Adam C (2007a) Nested domain decomposition direct and iterative solvers based on a hierarchical h-adaptive finite element code. In: Runesson K, Díez P (eds) Adaptive Modeling and Simulation 2007, Internacional Center for Numerical Methods in Engineering (CIMNE), pp 206–209 es_ES
dc.description.references Ródenas J J, Tur M, Fuenmayor F J, Vercher A (2007b) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6):705–727 es_ES
dc.description.references Ródenas J J, Bugeda G, Albelda J, Oñate E (2011) On the need for the use of error-controlled finite element analyses in structural shape optimization processes. Int J Numer Methods Eng 87(11):1105–1126 es_ES
dc.description.references Schillinger D, Ruess M (2015) The finite cell method: A review in the context of higher-order structural analysis of cad and image-based geometric models. Arch Comput Meth Eng 22(3):391– 455 es_ES
dc.description.references Sevilla R, Fernández-Méndez S, Huerta A (2011a) 3D-NURBS-enhanced Finite Element Method (NEFEM). Int J Numer Methods Eng 88(2):103–125 es_ES
dc.description.references Sevilla R, Fernández-Méndez S, Huerta A (2011b) Comparison of High-order Curved Finite Elements. Int J Numer Methods Eng 87(8):719–734 es_ES
dc.description.references Sevilla R, Fernández-Méndez S, Huerta A (2011c) NURBS-enhanced Finite Element Method (NEFEM): A Seamless Bridge Between CAD and FEM. Arch Comput Meth Eng 18(4):441–484 es_ES
dc.description.references Sweeney M, Bartels R (1986) Ray tracing free-form b-spline surfaces. IEEE Comput Graph Appl 6(2):41–49 es_ES
dc.description.references Toth D L (1985) On Ray Tracing Parametric Surfaces. SIGGRAPH Comput Graph 19(3):171–179 es_ES
dc.description.references Tur M, Albelda J, Nadal E, Ródenas J J (2014) Imposing dirichlet boundary conditions in hierarchical cartesian meshes by means of stabilized lagrange multipliers. Int J Numer Methods Eng 98(6):399–417 es_ES
dc.description.references Tur M, Albelda J, Marco O, Ródenas J J (2015) Stabilized Method to Impose Dirichlet Boundary Conditions using a Smooth Stress Field. Comput Methods Appl Mech Eng 296:352–375 es_ES
dc.description.references Yao T, Choi KK (1989) 3-d shape optimal design and automatic finite element regridding. Int J Numer Methods Eng 28(2):369–384 es_ES
dc.description.references Zhang L, Gerstenberger A, Wang X, Liu W K (2004) Immersed Finite Element Method. Comput Methods Appl Mech Eng 293(21):2051–2067 es_ES
dc.description.references Zhang Y, Wang W, Hughes T J R (2013) Conformal Solid T-spline Construction from Boundary T-spline Representations. Comput Mech 6(51):1051–1059 es_ES
dc.description.references Zienkiewicz O C, Zhu J Z (1987) A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis. Int J Numer Methods Eng 24(2):337–357 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem