Flockhart, G. M. H., MacPherson, W. N., Barton, J. S., Jones, J. D. C., Zhang, L., & Bennion, I. (2003). Two-axis bend measurement with Bragg gratings in multicore optical fiber. Optics Letters, 28(6), 387. doi:10.1364/ol.28.000387
Fender, A., MacPherson, W. N., Maier, R. R. J., Barton, J. S., George, D. S., Howden, R. I., … Bennion, I. (2008). Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings. IEEE Sensors Journal, 8(7), 1292-1298. doi:10.1109/jsen.2008.926878
Barrera, D., Gasulla, I., & Sales, S. (2015). Multipoint Two-Dimensional Curvature Optical Fiber Sensor Based on a Nontwisted Homogeneous Four-Core Fiber. Journal of Lightwave Technology, 33(12), 2445-2450. doi:10.1109/jlt.2014.2366556
[+]
Flockhart, G. M. H., MacPherson, W. N., Barton, J. S., Jones, J. D. C., Zhang, L., & Bennion, I. (2003). Two-axis bend measurement with Bragg gratings in multicore optical fiber. Optics Letters, 28(6), 387. doi:10.1364/ol.28.000387
Fender, A., MacPherson, W. N., Maier, R. R. J., Barton, J. S., George, D. S., Howden, R. I., … Bennion, I. (2008). Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings. IEEE Sensors Journal, 8(7), 1292-1298. doi:10.1109/jsen.2008.926878
Barrera, D., Gasulla, I., & Sales, S. (2015). Multipoint Two-Dimensional Curvature Optical Fiber Sensor Based on a Nontwisted Homogeneous Four-Core Fiber. Journal of Lightwave Technology, 33(12), 2445-2450. doi:10.1109/jlt.2014.2366556
Corres, J. M., Arregui, F. J., & Matías, I. R. (2007). Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings. Sensors and Actuators B: Chemical, 122(2), 442-449. doi:10.1016/j.snb.2006.06.008
Barrera, D., Villatoro, J., Finazzi, V. P., Cárdenas-Sevilla, G. A., Minkovich, V. P., Sales, S., & Pruneri, V. (2010). Low-Loss Photonic Crystal Fiber Interferometers for Sensor Networks. Journal of Lightwave Technology, 28(24), 3542-3547. doi:10.1109/jlt.2010.2090861
Kisała, P., Harasim, D., & Mroczka, J. (2016). Temperature-insensitive simultaneous rotation and displacement (bending) sensor based on tilted fiber Bragg grating. Optics Express, 24(26), 29922. doi:10.1364/oe.24.029922
Albert, J., Shao, L.-Y., & Caucheteur, C. (2012). Tilted fiber Bragg grating sensors. Laser & Photonics Reviews, 7(1), 83-108. doi:10.1002/lpor.201100039
Chen, C., Caucheteur, C., Mégret, P., & Albert, J. (2007). The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses. Measurement Science and Technology, 18(10), 3117-3122. doi:10.1088/0957-0233/18/10/s11
Dong, X., Zhang, H., Liu, B., & Miao, Y. (2010). Tilted fiber Bragg gratings: Principle and sensing applications. Photonic Sensors, 1(1), 6-30. doi:10.1007/s13320-010-0016-x
Guo, T., Liu, F., Guan, B.-O., & Albert, J. (2016). [INVITED] Tilted fiber grating mechanical and biochemical sensors. Optics & Laser Technology, 78, 19-33. doi:10.1016/j.optlastec.2015.10.007
Cai, Z., Liu, F., Guo, T., Guan, B.-O., Peng, G.-D., & Albert, J. (2015). Evanescently coupled optical fiber refractometer based a tilted fiber Bragg grating and a D-shaped fiber. Optics Express, 23(16), 20971. doi:10.1364/oe.23.020971
Gasulla, I., Barrera, D., Hervás, J., & Sales, S. (2017). Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers. Scientific Reports, 7(1). doi:10.1038/srep41727
Gallagher, M., & Österberg, U. (1993). Time resolved 3.10 eV luminescence in germanium‐doped silica glass. Applied Physics Letters, 63(22), 2987-2989. doi:10.1063/1.110290
Komukai, T., & Nakazawa, M. (1996). Fabrication of high-quality long-fiber Bragg grating by monitoring 3.1-eV radiation (400 nm) from GeO defects. IEEE Photonics Technology Letters, 8(11), 1495-1497. doi:10.1109/68.541561
[-]