Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez Fernández, Pablo | es_ES |
dc.contributor.author | García-Román, Carla | es_ES |
dc.contributor.author | Insa Franco, Ricardo | es_ES |
dc.date.accessioned | 2018-06-04T04:25:12Z | |
dc.date.available | 2018-06-04T04:25:12Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/103303 | |
dc.description.abstract | [EN] Nowadays there is an evident concern regarding the efficiency and sustainability of the transport sector due to both the threat of climate change and the current financial crisis. This concern explains the growth of railways over the last years as they present an inherent efficiency compared to other transport means. However, in order to further expand their role, it is necessary to optimise their energy consumption so as to increase their competitiveness. Improving railways energy efficiency requires both reliable data and modelling tools that will allow the study of different variables and alternatives. With this need in mind, this paper presents the development of consumption models based on neural networks that calculate the energy consumption of electric trains. These networks have been trained based on an extensive set of consumption data measured in line 1 of the Valencia Metro Network. Once trained, the neural networks provide a reliable estimation of the vehicles consumption along a specific route when fed with input data such as train speed, acceleration or track longitudinal slope. These networks represent a useful modelling tool that may allow a deeper study of railway lines in terms of energy expenditure with the objective of reducing the costs and environmental impact associated to railways. | es_ES |
dc.description.sponsorship | The authors wish to thank Ferrocarrils de la Generalitat Valenciana (FGV) for their permission and help during the monitoring campaign. Project funded by the Spanish Ministry of Economy and Competitiveness (Grant Number TRA2011-26602). | |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Transportation Research Procedia | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Railways | es_ES |
dc.subject | Neural Networks | es_ES |
dc.subject | Energy efficiency | es_ES |
dc.subject | Modelling | es_ES |
dc.subject | Metro. | es_ES |
dc.subject.classification | INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES | es_ES |
dc.title | Modelling Electric Trains Energy Consumption Using Neural Networks | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1016/j.trpro.2016.12.008 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TRA2011-26602/ES/ESTRATEGIAS PARA EL DISEÑO Y LA EXPLOTACION ENERGETICAMENTE EFICIENTE DE INFRAESTRUCTURAS FERROVIARAS Y TRANVIARIAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori | es_ES |
dc.description.bibliographicCitation | Martínez Fernández, P.; García-Román, C.; Insa Franco, R. (2016). Modelling Electric Trains Energy Consumption Using Neural Networks. Transportation Research Procedia. 18:59-65. https://doi.org/10.1016/j.trpro.2016.12.008 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | XII Congreso de Ingeniería del Transporte (CIT 2016) | es_ES |
dc.relation.conferencedate | June 07-09,2016 | es_ES |
dc.relation.conferenceplace | Valencia, Spain | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.trpro.2016.12.008 | es_ES |
dc.description.upvformatpinicio | 59 | es_ES |
dc.description.upvformatpfin | 65 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.identifier.eissn | 2352-1465 | es_ES |
dc.relation.pasarela | S\354134 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |