- -

Relative Termination via Dependency Pairs

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Relative Termination via Dependency Pairs

Show full item record

Iborra, J.; Nishida, N.; Vidal Oriola, G.; Yamada, A. (2017). Relative Termination via Dependency Pairs. Journal of Automated Reasoning. 58(3):391-411. doi:10.1007/s10817-016-9373-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/103613

Files in this item

Item Metadata

Title: Relative Termination via Dependency Pairs
Author: Iborra, José Nishida, Naoki Vidal Oriola, Germán Yamada, Akihisa
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] A term rewrite system is terminating when no infinite reduction sequences are possible. Relative termination generalizes termination by permitting infinite reductions as long as some distinguished rules are not applied ...[+]
Subjects: Term rewriting , Dependency pairs , Termination
Copyrigths: Reserva de todos los derechos
Source:
Journal of Automated Reasoning. (issn: 0168-7433 )
DOI: 10.1007/s10817-016-9373-5
Publisher:
Springer-Verlag
Publisher version: http://doi.org/10.1007/s10817-016-9373-5
Thanks:
Open access funding provided by Austrian Science Fund (FWF). We would like to thank Nao Hirokawa, Keiichirou Kusakari, and the anonymous reviewers for their helpful comments and suggestions in early stages of this work.
Type: Artículo

References

Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A $$\vee $$ ∨ C-termination. In: WRLA 2010, LNCS, vol. 6381, pp. 36–52. Springer (2010)

Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)

Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs. Technical report AIB-2001-09, RWTH Aachen (2001) [+]
Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A $$\vee $$ ∨ C-termination. In: WRLA 2010, LNCS, vol. 6381, pp. 36–52. Springer (2010)

Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)

Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs. Technical report AIB-2001-09, RWTH Aachen (2001)

Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

Bachmair, L., Dershowitz, N.: Critical pair criteria for completion. J. Symb. Comput. 6, 1–18 (1988)

Bonacina, M., Hsiang, J.: On fairness of completion-based theorem proving strategies. In: RTA 1991, LNCS, vol. 488, pp. 348–360. Springer (1991)

Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1&2), 69–115 (1987)

Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reason. 40(2–3), 195–220 (2008)

Geser, A.: Relative Termination. Dissertation, Fakultät für Mathematik und Informatik. Universität Passau, Germany (1990)

Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: RTA 2001, LNCS, vol. 2051, pp. 93–107. Springer (2001)

Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: IJCAR 2006, LNCS, vol. 4130, pp. 281–286. Springer (2006)

Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency Pairs. J. Autom. Reason. 37(3), 155–203 (2006)

Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: RTA 2004, LNCS, vol. 3091, pp. 249–268. Springer (2004)

Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coefficients. In: AISC 2004, LNAI, vol. 3249, pp. 185–198. Springer (2004)

Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: techniques and features. Inf. Comput. 205(4), 474–511 (2007)

Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J. Autom. Reason. 47(4), 481–501 (2011)

Hullot, J.M.: Canonical forms and unification. In: CADE 1980, LNCS, vol. 87, pp. 318–334. Springer (1980)

Iborra, J., Nishida, N., Vidal, G.: Goal-directed and relative dependency pairs for proving the termination of narrowing. In: LOPSTR 2009, LNCS, vol. 6037, pp. 52–66. Springer (2010)

Iborra, J., Nishida, N., Vidal, G., Yamada, A.: Reducing relative termination to dependency pair problems. In: CADE-25, LNAI, vol. 9195, pp. 163–178. Springer (2015)

Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering (1980). Unpublished note

Klop, J.W.: Term rewriting systems: a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. 32, 143–183 (1987)

Koprowski, A.: TPA: termination proved automatically. In: RTA 2006, LNCS, vol. 4098, pp. 257–266. Springer (2006)

Koprowski, A., Zantema, H.: Proving liveness with fairness using rewriting. In: FroCoS 2005, LNCS, vol. 3717, pp. 232–247. Springer (2005)

Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: RTA 2009, LNCS, vol. 5595, pp. 295–304. Springer (2009)

Kusakari, K., Toyama, Y.: On proving AC-termination by AC-dependency pairs. IEICE Trans. Inf. Syst. E84–D(5), 439–447 (2001)

Lankford, D.: Canonical algebraic simplification in computational logic. Technical report ATP-25, University of Texas (1975)

Marché, C., Urbain, X.: Modular and incremental proofs of AC-termination. J. Symb. Comput. 38(1), 873–897 (2004)

Nishida, N., Sakai, M., Sakabe, T.: Narrowing-based simulation of term rewriting systems with extra variables. ENTCS 86(3), 52–69 (2003)

Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting. Appl. Algebra Eng. Commun. Comput. 21(3), 177–225 (2010)

Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, London (2002)

Slagle, J.: Automated theorem-proving for theories with simplifiers commutativity and associativity. J. ACM 21(4), 622–642 (1974)

Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination techniques based on multiset orderings. In: RTA 2012, LIPIcs, vol. 15, pp. 339–354. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)

Vidal, G.: Termination of narrowing in left-linear constructor systems. In: FLOPS 2008, LNCS, vol. 4989, pp. 113–129. Springer (2008)

Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: RTA-TLCA 2014, LNCS, pp. 466–475. Springer (2014)

Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving. Sci. Comput. Program. 111, 110–134 (2015)

Zantema, H.: Termination of term rewriting by semantic labelling. Fundam. Inf. 24(1/2), 89–105 (1995)

Zantema, H.: Termination. In: Bezem, M., Klop, J. W., de Vrijer, R. (eds.) Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science, chap. 6, vol. 55, pp. 181–259. Cambridge University Press, Cambridge (2003)

[-]

This item appears in the following Collection(s)

Show full item record