- -

Strain-dependent mutational effects for Pepino mosaic virus in a natural host

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Strain-dependent mutational effects for Pepino mosaic virus in a natural host

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Minicka, J es_ES
dc.contributor.author Elena Fito, Santiago F. es_ES
dc.contributor.author Borodynko-Filas, N. es_ES
dc.contributor.author Rubis, B. es_ES
dc.contributor.author Hasiów-Jaroszewska, B. es_ES
dc.date.accessioned 2018-06-08T04:33:05Z
dc.date.available 2018-06-08T04:33:05Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1471-2148 es_ES
dc.identifier.uri http://hdl.handle.net/10251/103636
dc.description.abstract [EN] Pepino mosaic virus (PepMV) is an emerging plant pathogen that infects tomatoes worldwide. Understanding the factors that influence its evolutionary success is essential for developing new control strategies that may be more robust against the evolution of new viral strains. One of these evolutionary factors is the distribution of mutational fitness effect (DMFE), that is, the fraction of mutations that are lethal, deleterious, neutral, and beneficial on a given viral strain and host species. The goal of this study was to characterize the DMFE of introduced nonsynonymous mutations on a mild isolate of PepMV from the Chilean 2 strain (PepMV-P22). Additionally, we also explored whether the fitness effect of a given mutation depends on the gene where it appears or on epistatic interactions with the genetic background. To address this latter possibility, a subset of mutations were also introduced in a mild isolate of the European strain (PepMV-P11) and the fitness of the resulting clones measured. es_ES
dc.description.sponsorship This study was financially supported by grant 2011/01/D/NZ9/00279, from the Poland National Science Center, to B.H.J and by grants BFU2015-65037-P, from Spain Ministry of Economy and Competitiveness-FEDER, and PROMETEOII/2014/021, from Generalitat Valenciana, to S.F.E. en_EN
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Evolutionary Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Epistasis es_ES
dc.subject Mutational fitness effect es_ES
dc.subject Pepino mosaic virus es_ES
dc.subject Real-time quantitative PCR es_ES
dc.subject Site-directed mutagenesis es_ES
dc.subject Virus accumulation es_ES
dc.subject Virus evolution es_ES
dc.title Strain-dependent mutational effects for Pepino mosaic virus in a natural host es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12862-017-0920-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F021/ES/Comparative systems biology of host-virus interactions/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Minicka, J.; Elena Fito, SF.; Borodynko-Filas, N.; Rubis, B.; Hasiów-Jaroszewska, B. (2017). Strain-dependent mutational effects for Pepino mosaic virus in a natural host. BMC Evolutionary Biology. 17:1-11. https://doi.org/10.1186/s12862-017-0920-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12862-017-0920-4 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.identifier.pmid 28264646 en_EN
dc.identifier.pmcid PMC5339997 en_EN
dc.relation.pasarela S\339116 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Steinhauer DA, Domingo E, Holland JJ. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene. 1992;122:281–8. es_ES
dc.description.references Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. Viral mutation rates. J Virol. 2010;84:9733–48. es_ES
dc.description.references Domingo E. Viruses at the edge of adaptation. Virology. 2000;270:251–3. es_ES
dc.description.references Chao L. Fitness of RNA virus decreased by muller ratchet. Nature. 1990;348:454–5. es_ES
dc.description.references Duarte E, Clarke D, Moya A, Domingo E, Holland J. Rapid fitness losses in mammalian RNA virus clones due to Muller ratchet. Proc Natl Acad Sci U S A. 1992;89:6015–9. es_ES
dc.description.references De la Iglesia F, Elena SF. Fitness declines in Tobacco etch virus upon serial bottleneck transfers. J Virol. 2007;81:4941–7. es_ES
dc.description.references Elena SF, Carrasco P, Daròs JA, Sanjuán R. Mechanisms of genetic robustness in RNA viruses. EMBO Rep. 2006;7:168–73. es_ES
dc.description.references Elena SF, Moya A. Rate of deleterious mutation and the distribution of its effects on fitness in Vesicular stomatitis virus. J Evol Biol. 1999;12:1078–88. es_ES
dc.description.references Sanjuán R, Moya A, Elena SF. The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc Natl Acad Sci U S A. 2004;101:8396–401. es_ES
dc.description.references Acevedo A, Brodsky L, Andino R. Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature. 2014;505:686–90. es_ES
dc.description.references Visher E, Whitefield SE, McCrone JT, Fitzsimmons W, Lauring AS. The mutational robustness of Influenza A virus. PLoS Pathog. 2016;12, e1005856. es_ES
dc.description.references Carrasco P, de la Iglesia F, Elena SF. Distribution of fitness and virulence effects caused by single-nucleotide substitutions in Tobacco etch virus. J Virol. 2007;81:12979–84. es_ES
dc.description.references Bernet GP, Elena SF. Distribution of mutational fitness effects and of epistasis in the 5′ untranslated region of a plant RNA virus. BMC Evol Biol. 2015;15:274. es_ES
dc.description.references Domingo-Calap P, Cuevas JM, Sanjuán R. The fitness effects of random mutations in single-stranded DNA and RNA bacteriophages. PLoS Genet. 2009;5, e1000742. es_ES
dc.description.references Peris JB, Davis P, Cuevas JM, Nebot MR, Sanjuán R. Distribution of fitness effects caused by single-nucleotide substitutions in bacteriophage f1. Genetics. 2010;185:603–9. es_ES
dc.description.references Keightley PD, Ohnishi O. EMS-induced polygenic mutation rates for nine quantitative characters in Drosophila melanogaster. Genetics. 1998;148:753–66. es_ES
dc.description.references Keightley PD, Davies EK, Peters AD, Shaw RG. Properties of ethylmethane sulfonate-induced mutations affecting life-history traits in Caenorhabditis elegans and inferences about bivariate distributions of mutation effects. Genetics. 2000;156:143–54. es_ES
dc.description.references Koufopanou V, Lomas S, Tsai IJ, Burt A. Estimating the fitness effects of new mutations in the wild yeast Saccharomyces paradoxus. Genome Biol Evol. 2015;7:1887–95. es_ES
dc.description.references Sanjuán R. Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis. Philos Trans R Soc B. 2010;365:1975–82. es_ES
dc.description.references Keightley PD, Lynch M. Toward a realistic model of mutations affecting fitness. Evolution. 2003;57:683–5. es_ES
dc.description.references Orr HA. The distribution of fitness effects among beneficial mutations. Genetics. 2003;163:1519–26. es_ES
dc.description.references Miralles R, Gerrish PJ, Moya A, Elena SF. Clonal interference and the evolution of RNA viruses. Science. 1999;285:1745–7. es_ES
dc.description.references Escarmís C, Dávila M, Charpentier N, Bracho A, Moya A, Domingo E. Genetic lesions associated with Muller’s ratchet in an RNA virus. J Mol Biol. 1996;264:255–67. es_ES
dc.description.references Phillips PC. Epistasis - the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet. 2008;9:855–67. es_ES
dc.description.references De Visser JAGM, Krug J. Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet. 2014;15:480–90. es_ES
dc.description.references Lalić J, Elena SF. Magnitude and sign epistasis among deleterious mutations in a positive-sense plant RNA virus. Heredity. 2012;109:71–7. es_ES
dc.description.references Lalić J, Elena SF. The impact of higher-order epistasis in the within-host fitness of a positive-sense plant RNA virus. J Evol Biol. 2015;28:2236–47. es_ES
dc.description.references Hillung J, Cuevas JM, Elena SF. Evaluating the within-host fitness effects of mutations fixed during virus adaptation to different ecotypes of a new host. Philos Trans R Soc B. 2015;370:20140292. es_ES
dc.description.references Cervera H, Lalić J, Elena SF. Effect of host species on the topography of the fitness landscape for a plant RNA virus. J Virol. 2016;90:10160–9. es_ES
dc.description.references Cervera H, Lalić J, Elena SF. Efficient escape from local optima in a highly rugged fitness landscape by evolving RNA virus populations. Proc R Soc B. 2016;283:20160984. es_ES
dc.description.references Blystad DR, van der Vlugt R, Alfaro-Fernandez A, Cordoba MD, Bese G, Hristova D, Pospieszny H, Mehle N, Ravnikar M, Tomassoli L, Varveri C, Nielsen SL. Host range and symptomatology of Pepino mosaic virus strains occurring in Europe. Eur J Plant Pathol. 2015;143:43–56. es_ES
dc.description.references Mumford RA, Metcalfe EJ. The partial sequencing of the genomic RNA of a UK isolate of Pepino mosaic virus and the comparison of the coat protein sequence with other isolates from Europe and Peru. Arch Virol. 2001;146:2455–60. es_ES
dc.description.references Roggero P, Masenga V, Lenzi R, Coghe F, Ena S, Winter S. First report of Pepino mosaic virus in tomato in Italy. Plant Dis. 2001;3:8. es_ES
dc.description.references Cotillon AC, Girard M, Ducouret S. Complete nucleotide sequence of the genomic RNA of a French isolate of Pepino mosaic virus (PepMV). Arch Virol. 2002;147:2231–8. es_ES
dc.description.references Maroon-Lango CJ, Guaragna MA, Jordan RL, Hammond J, Bandla M, Marquardt SK. Two unique US isolates of Pepino mosaic virus from a limited source of pooled tomato tissue are distinct from a third (European-like) US isolate. Arch Virol. 2005;150:1187–201. es_ES
dc.description.references Pagán I, Córdoba-Selles MD, Martínez-Priego L, Fraile A, Malpica JM, Jorda C, García-Arenal F. Genetic structure of the population of Pepino mosaic virus infecting tomato crops in Spain. Phytopathology. 2006;96:274–9. es_ES
dc.description.references Ling KS. Molecular characterization of two Pepino mosaic virus variants from imported tomato seed reveals high levels of sequence identity between Chilean and US isolates. Virus Genes. 2007;34:1–8. es_ES
dc.description.references Hanssen IM, Paeleman A, Wittemans L, Goen K, Lievens B, Bragard C, Vanachter A, Thomma B. Genetic characterization of Pepino mosaic virus isolates from Belgian greenhouse tomatoes reveals genetic recombination. Eur J Plant Pathol. 2008;121:131–46. es_ES
dc.description.references Hasiów B, Borodynko N, Pospieszny H. Complete genomic RNA sequence of the Polish Pepino mosaic virus isolate belonging to the US2 strain. Virus Genes. 2008;36:209–14. es_ES
dc.description.references Hanssen IM, Paeleman A, Vandewoestijne E, Van Bergen L, Bragard C, Lievens B, Vanacher ACRC, Thomma BPHJ. Pepino mosaic virus isolates and differential symptomatology in tomato. Plant Pathol. 2009;58:450–60. es_ES
dc.description.references Moreno-Pérez MG, Pagán I, Aragón-Caballero L, Cáceres F, Fraile A, García-Arenal F. Ecological and genetic determinants of Pepino mosaic virus emergence. J Virol. 2014;88:3359–68. es_ES
dc.description.references Ling K, Li R, Bledsoe M. Pepino mosaic virus genotype shift in North America and development of a loop-mediated isothermal amplification for rapid genotype identification. Virol J. 2013;10:117. es_ES
dc.description.references Hasiów-Jaroszewska B, Paeleman A, Ortega-Parra N, Borodynko N, Minicka J, Czerwoniec A, Thomma BP, Hanssen IM. Ratio of mutated versus wild-type coat protein sequences in Pepino mosaic virus determines the nature and severity of yellowing symptoms on tomato plants. Mol Plant Pathol. 2013;14:923–33. es_ES
dc.description.references Sempere RN, Gómez-Aix C, Ruiz-Ramon F, Gómez P, Hasiów-Jaroszewska B, Sánchez-Pina MA, Aranda MA. Pepino mosaic virus RNA-dependent RNA polymerase POL domain is a hypersensitive response-like elicitor shared by necrotic and mild isolates. Phytopathology. 2016;106:395–406. es_ES
dc.description.references Hasiów-Jaroszewska B, Borodynko N, Jackowiak P, Figlerowicz M, Pospieszny H. Single mutation converts mild pathotype of the Pepino mosaic virus into necrotic one. Virus Res. 2011;159:57–61. es_ES
dc.description.references Minicka J, Rymelska N, Elena SF, Czerwoniec A, Hasiów-Jaroszewska B. Molecular evolution of Pepino mosaic virus during long-term passaging in different hosts and its impact on virus virulence. Ann Appl Biol. 2015;166:389–401. es_ES
dc.description.references Hasiów-Jaroszewska B, Jackowiak P, Borodynko N, Figlerowicz M, Pospieszny H. Quasispecies nature of Pepino mosaic virus and its evolutionary dynamics. Virus Genes. 2010;41:260–7. es_ES
dc.description.references Eigen M, McCaskill J, Schuster P. Molecular quasi-species. J Phys Chem. 1988;92(24):6881–91. es_ES
dc.description.references Schneider WL, Roossinck MJ. Evolutionarily related Sindbis-like plant viruses maintain different levels of population diversity in a common host. J Virol. 2000;74:3130–4. es_ES
dc.description.references Legg JP, Thresh JM. Cassava mosaic virus disease in East Africa: a dynamic disease in a changing environment. Virus Res. 2000;71:135–49. es_ES
dc.description.references Hasiów-Jaroszewska B, Borodynko N, Pospieszny H. Infectious RNA transcripts derived from cloned cDNA of a Pepino mosaic virus isolate. Arch Virol. 2009;154:853–6. es_ES
dc.description.references Hasiów-Jaroszewska B, Komorowska B. A new method for detection and discrimination of Pepino mosaic virus isolates using high resolution melting analysis of the triple gene block 3. J Virol Methods. 2013;193:1–5. es_ES
dc.description.references Poelwijk FJ, Tanase-Nicola S, Kiviet DJ, Tans SJ. Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. J Theor Biol. 2011;272:141–4. es_ES
dc.description.references Dean AM, Thornton JW. Mechanistic approaches to the study of evolution: the functional synthesis. Nat Rev Genet. 2007;8:675–88. es_ES
dc.description.references Lalić J, Cuevas JM, Elena SF. Effect of host species on the distribution of mutational fitness effects for an RNA virus. PLoS Genet. 2011;7, e1002378. es_ES
dc.description.references Vale PF, Choisy M, Froissart R, Sanjuán R, Gandon S. The distribution of mutational fitness effects of phage ϕX174 on different hosts. Evolution. 2012;66:3495–507. es_ES
dc.description.references Hasiów-Jaroszewska B, Minicka J, Pospieszny H. Cross-protection between different pathotypes of Pepino mosaic virus representing chilean 2 genotype. Acta Sci Pol Hortoru. 2014;13:177–85. es_ES
dc.description.references Minicka J, Otulak K, Garbaczewska G, Pospieszny H, Hasiów-Jaroszewska B. Ultrastructural insights into tomato infections caused by three different pathotypes of Pepino mosaic virus and immunolocalization of viral coat proteins. Micron. 2015;79:84–92. es_ES
dc.description.references Gómez P, Sempere RN, Aranda MA, Elena SF. Phylodynamics of Pepino mosaic virus in Spain. Eur J Plant Pathol. 2012;134:445–9. es_ES
dc.description.references Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature. 2006;439:344–8. es_ES
dc.description.references Domingo E, Martíb V, Perales C, Grande-Pérez A, García-Arriaza Arias J. Viruses as quasispecies: biological implications. Curr Top Microbiol Immunol. 2006;299:51–82. es_ES
dc.description.references Jones RAC, Koenig R, Lesemann DE. Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Ann Appl Biol. 1980;94:61–8. es_ES
dc.description.references Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012;76:159–216. es_ES
dc.description.references Lough TJ, Emerson SJ, Lucas WJ, Forster RLS. Trans-complementation of long-distance movement of White clover mosaic virus triple gene block (TGB) mutants: Phloem-associated movement of TGBp1. Virology. 2001;288:18–28. es_ES
dc.description.references Pospieszny H, Hasiów B, Borodynko N. Characterization of two distinct Polish isolates of Pepino mosaic virus. Eur J Plant Pathol. 2008;122:443–5. es_ES
dc.description.references Gómez P, Sempere RN, Elena SF, Aranda MA. Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. J Virol. 2009;83:12378–87. es_ES
dc.description.references Elena SF, Solé RV, Sardanyés J. Simple genomes, complex interactions: epistasis in RNA virus. Chaos. 2010;20:026106. es_ES
dc.description.references Sanjuán R, Moya A, Elena SF. The contribution of epistasis to the architecture of fitness in an RNA virus. Proc Natl Acad Sci USA. 2004;101:15376–9. es_ES
dc.description.references Elena SF. RNA virus genetic robustness: possible causes and some consequences. Curr Opin Virol. 2012;2:525–30. es_ES
dc.description.references Stern A, Bianco S, Yeh MT, Wright CF, Butcher K, Tang C, Nielsen R, Andino R. Costs and benefits of mutational robustness in RNA viruses. Cell Rep. 2014;8:1–11. es_ES
dc.description.references Elena SF, Lalić J. Plant RNA virus fitness predictability: contribution of genetic and environmental factors. Plant Pathol. 2013;62:10–8. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem