- -

Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Igual Muñoz, Anna Neus es_ES
dc.contributor.author Mischler, Stefano es_ES
dc.date.accessioned 2018-06-09T04:20:00Z
dc.date.available 2018-06-09T04:20:00Z
dc.date.issued 2011 es_ES
dc.identifier.issn 0957-4530 es_ES
dc.identifier.uri http://hdl.handle.net/10251/103705
dc.description.abstract [EN] The corrosion behaviour and the wear ranking of biomedical high carbon (HC) and low carbon (LC) CoCrMo alloys sliding against an alumina ball in four different simulated body fluids [NaCl and phosphate buffered solutions (PBS) with and without albumin] has been analyzed by tribocorrosion and electrochemical techniques. The effects of alloy and of albumin on corrosion depend on the base electrolyte: differences between LC and HC alloy were only observed in NaCl solutions but not in PBS. Albumin increased significantly corrosion of both alloys in PBS solutions while its effect in NaCl was smaller. The wear ranking of the HC and LC alloys also depends on the environment. In the present study, HC CoCrMo alloy had lower wear resistance in NaCl and PBS + albumin than the LC alloy, while no differences between both alloys were found in the other solutions. This was attributed to surface chemical effects affecting third body behaviour. © Springer Science+Business Media, LLC 2011. es_ES
dc.language Inglés es_ES
dc.publisher SPRINGER es_ES
dc.relation.ispartof Journal of Materials Science Materials in Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alumina balls es_ES
dc.subject Base electrolytes es_ES
dc.subject CoCrMo alloy es_ES
dc.subject Corrosion behaviour es_ES
dc.subject Electrochemical techniques es_ES
dc.subject Low carbon es_ES
dc.subject NaCl solution es_ES
dc.subject PBS solution es_ES
dc.subject Phosphate-buffered solutions es_ES
dc.subject Simulated body fluids es_ES
dc.subject Surface chemical effects es_ES
dc.subject Third body es_ES
dc.subject Tribo-corrosion es_ES
dc.subject Alloys es_ES
dc.subject Corrosion es_ES
dc.subject Sodium chloride es_ES
dc.subject Wear resistance es_ES
dc.subject Cerium alloys es_ES
dc.subject Albumin es_ES
dc.subject Alloy es_ES
dc.subject Aluminum oxide es_ES
dc.subject Carbon es_ES
dc.subject Cobalt chromium molybdenum es_ES
dc.subject Electrolyte es_ES
dc.subject High carbon es_ES
dc.subject phosphate buffered saline es_ES
dc.subject Unclassified drug es_ES
dc.subject Article es_ES
dc.subject Biomedicine es_ES
dc.subject Body fluid es_ES
dc.subject Chemical environment es_ES
dc.subject Electrochemical analysis es_ES
dc.subject friction es_ES
dc.subject Mechanical stress es_ES
dc.subject Oxidation es_ES
dc.subject Polarization es_ES
dc.subject Priority journal es_ES
dc.subject Albumins es_ES
dc.subject Biocompatible Materials es_ES
dc.subject Body Fluids es_ES
dc.subject Electrochemistry es_ES
dc.subject Electrolytes es_ES
dc.subject Materials Testing es_ES
dc.subject Phosphates es_ES
dc.subject Salts es_ES
dc.subject Vitallium es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10856-010-4224-0 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Igual Muñoz, AN.; Mischler, S. (2011). Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys. Journal of Materials Science Materials in Medicine. 22(3):437-450. doi:10.1007/s10856-010-4224-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10856-010-4224-0 es_ES
dc.description.upvformatpinicio 437 es_ES
dc.description.upvformatpfin 450 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 21221728
dc.relation.pasarela S\211437 es_ES
dc.description.references Rieker CB, Schön R, Köttig P. Development and validation of a second-generation metal-on-metal bearing: laboratory studies and analysis of retrievals. J Arthroplast. 2004;19:5–11. es_ES
dc.description.references Sargeant A, Goswami T. Hip implants: Paper V. Physiological effects. Mater Des. 2006;27:287–307. es_ES
dc.description.references Sargeant A, Goswami T. Hip implants: Paper VI. Ion concentrations. Mater Des. 2007;28:155–71. es_ES
dc.description.references Yan Y, Neville A, Dowson D, Williams S. Tribocorrosion in implants—assessing high carbon and low carbon Co-Cr-Mo alloys by in situ electrochemical measurements. Tribol Int. 2006;39:1509–17. es_ES
dc.description.references Wang A, Yue S, Bobyn JD, Chan FW, Medley JB. Surface characterization of metal-on-metal hip implants tested in a hip simulator. Wear. 1999;225–229:708–15. es_ES
dc.description.references Wang KK, Wang A, Gustavson LJ. Metal-on-metal wear testing of CoCr alloys. In: Disegi JA, Kenedy RL, Pilliar R, editors. Cobalt-base alloys for biomedical applications ASTM STP 1365. Conshohocken, PA: ASTM STP 1365; 1999. p. 135–44. es_ES
dc.description.references Tipper JL, Firkins PJ, Ingham E, Fischer J. Quantitative analysis of the wear and wear debris from low and high carbon content cobalt chrome alloys used in metal on metal total hip replacements. J Mater Sci Mater Med. 1999;10:353–62. es_ES
dc.description.references St John KR, Poggie RA, Zardiackas LD, Afflitto M. Comparison of two cobalt-based alloys for use in metal-on-metal hip prostheses: evaluation of the wear properties in a simulator. In: Disegi JA, Kenedy RL, Pilliar R, editors. Cobalt-base alloys for biomedical applications ASTM STP 1365. West Conshohocken, PA: ASTM STP 1365; 1999. p. 145–55. es_ES
dc.description.references Scholes SC, Unsworth A. Pin-on-plate studies on the effect of rotation on the wear of metal-on-metal samples. J Mater Sci Mater Med. 2001;12:299–303. es_ES
dc.description.references Firkins PJ, Tipper JL, Ingham E, Stone MH, Farrar R, Fisher J. A novel low wearing differential hardness, ceramic-on-metal hip joint prosthesis. J Biomech. 2001;34:1291–8. es_ES
dc.description.references St John KR, Zardiackas LD, Poggie RA. Wear evaluation of cobalt-chromium alloy for use in a metal-on-metal hip prosthesis. J Biomed Mat Res. 2003;68B:1–14. es_ES
dc.description.references Cawley J, Metcalf JEP, Jones AH, Band TJ, Skupien DS. A tribological study of cobalt chromium molybdenum alloys used in metal-on-metal resurfacing hip arthoplasty. Wear. 2003;255:999–1006. es_ES
dc.description.references Varano R, Bobyn JD, Medley JB, Yue S. Why is high carbon important in the tribology of metal-on-metal hip implants? In: 7th World Biomaterials Congress, 87; 2004. es_ES
dc.description.references Varano R, Bobyn JD, Medley JB, Yue S. Effect of microstructure on the dry sliding friction behaviour of CoCrMo alloys used in metal-on-metal hip implants. J Biomed Mat Res. 2006;76B:281–6. es_ES
dc.description.references Varano R, Bobyn JD, Medley JB, Yue S. The effect of microstructure on the wear of cobalt-based alloys used in metal-on-metal hip implants. J Eng Med. 2006;220:145–59. es_ES
dc.description.references Chiba A, Kumagai K, Nomura N, Miyakawa S. Pin-on-disk wear behavior in a like-on-like configuration in a biological environment of high carbon cast and low carbon froged Co-29Cr-6Mo alloys. Acta Biomater. 2007;55:1309–18. es_ES
dc.description.references Yan Y, Neville A, Dowson D. Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments. Wear. 2007;263:1105–11. es_ES
dc.description.references Hiromoto S, Onodera E, Chiba A, Asami K, Hanawa T. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys. Biomaterials. 2005;26:4912–23. es_ES
dc.description.references Wimmer MA, Loos J, Nassutt R, Heitkemper M, Fischer A. The acting wear mechanisms on metal-on-metal hip joint bearings: in vitro results. Wear. 2001;250:129–39. es_ES
dc.description.references Sun D, Wharton JA, Wood RJK. Micro-abrasion mechanisms of cast CoCrMo in simulated body fluids. Wear. 2009;267:1845–55. es_ES
dc.description.references Igual Muñoz A, Casaban Julian L. Influence of electrochemical potential on the tribocorrosion behaviour of high carbon CoCrMo biomedical alloy in simulated body fluids by electrochemical impedance spectroscopy. Electrochim Acta. 2010;55:5428–39. es_ES
dc.description.references Wood RJK, Sun D, Thakare MR, Frutos Rozas A, Wharton JA. Interpretation of electrochemical measurements made during micro-scale abrasion-corrosion. Tribol Int. 2010;43:1218–27. es_ES
dc.description.references Wimmer MA, Sprecher C, Hauert R, Täger G, Fischer A. Tribochemical reaction on metal-on-metal hip joint bearings—in vitro results. Wear. 2003;255:1007–14. es_ES
dc.description.references Stemp M, Mischler S, Landolt D. The effect of contact configuration on the tribocorrosion of stainless steel reciprocating sliding under potentiostatic control. Corros Sci. 2003;45:625–40. es_ES
dc.description.references Radice S, Mischler S. Effect of electrochemical and mechanical parameters on the lubrication behaviour of Al2O3 nanoparticles in aqueous suspensions. Wear. 2006;261:1032–41. es_ES
dc.description.references Landolt D, Mischler S, Stemp M. Electrochemical methods in tribocorrosion: a critical appraisal. Electrochim Acta. 2001;46:3913–29. es_ES
dc.description.references Mischler S, Spiegel A, Stemp M, Landolt D. Influence of passivity on the tribocorrosion of carbon steel in aqueous solution. Wear. 2001;251:1295–307. es_ES
dc.description.references Igual-Muñoz A, Mischler S. Inter-laboratory study on electrochemical methods for the characterization of CoCrMo biomedical alloys in simulated body fluids (EFC 61). European Federation of Corrosion; 2010. es_ES
dc.description.references Landolt D. Corrosion and surface chemistry of metals. Lausanne: CRC Press; 2007. es_ES
dc.description.references Sims C. Cobalt based alloys. New York: Wiley; 1972. p. 260. es_ES
dc.description.references Igual-Muñoz A, Mischler S. Interactive effects of albumin and phosphate ions on the corrosion of CoCrMo implant alloy. J Electrochem Soc. 2007;154:C562–70. es_ES
dc.description.references Milosev I, Strehblow H-H. The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochem Acta. 2003;48:2767–74. es_ES
dc.description.references Hodgson AWE, Kurz S, Virtanen S, Fervel V, Olsson COA, Mischler S. Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochim Acta. 2004;49:2167–78. es_ES
dc.description.references Mischler S. Triboelectrochemical techniques and interpretation methods in tribocorrosion: a comparative evaluation. Tribol Int. 2008;41:573–83. es_ES
dc.description.references Favero M, Stadelmann P, Mischler S. Effect of the applied potential of the near surface microstructure of a 316L steel submitted to tribocorrosion in sulfuric acid. J Phys D Appl Phys. 2006;39:3175–83. es_ES
dc.description.references Bidiville A, Favero M, Stadelmann P, Mischler S. Effect of surface chemistry on the mechanical response of metals in sliding tribocorrosion systems. Wear. 2007;263:207–17. es_ES
dc.description.references Perret J, Boehm-Courjault E, Cantoni M, Mischler S, Beaudouin A, Chitty W, et al. EBSD, SEM and FIB characterisation of subsurface deformation during tribocorrosion of stainless steel in sulphuric acid. Wear (in press). es_ES
dc.description.references Espallargas N, Mischler S. Tribocorrosion behaviour of overlay welded Ni-Cr 625 alloy in sulphuric and nitric acids: electrochemical and chemical effects. Tribol Int. 2010;43:1209–17. es_ES
dc.description.references Kelsall GH, Zhu Y, Spikes HA. Electrochemical effects on friction between metal oxide surfaces in aqueous solutions. J Chem Soc Faraday Trans. 1993;89:267–72. es_ES
dc.description.references Sun D, Wharton JA, Wood RJK. Micro-abrasion-corrosion of cast CoCrMo—effects of micron and sub-micron sized abrasives. Wear. 2009;267:52–60. es_ES
dc.description.references Landolt D. Passivity issues in tribocorrosion. In: Philippe M, Vincent M, editors. Passivation of metals and semiconductors, and properties of thin oxide layers. Amsterdam: Elsevier Science; 2006. p. 477–87. es_ES
dc.description.references Mischler S, Spiegel A, Landolt D. The role of passive oxide films on the degradation of steel in tribocorrosion systems. Wear. 1999;225–229:1078–87. es_ES
dc.description.references Stemp M, Mischler S, Landolt D. The effect of mechanical and electrochemical parameters on the tribocorrosion rate of stainless steel in sulphuric acid. Wear. 2003;255:466–75. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem