Mostrar el registro sencillo del ítem
dc.contributor.author | Igual Muñoz, Anna Neus | es_ES |
dc.contributor.author | Mischler, Stefano | es_ES |
dc.date.accessioned | 2018-06-09T04:20:00Z | |
dc.date.available | 2018-06-09T04:20:00Z | |
dc.date.issued | 2011 | es_ES |
dc.identifier.issn | 0957-4530 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/103705 | |
dc.description.abstract | [EN] The corrosion behaviour and the wear ranking of biomedical high carbon (HC) and low carbon (LC) CoCrMo alloys sliding against an alumina ball in four different simulated body fluids [NaCl and phosphate buffered solutions (PBS) with and without albumin] has been analyzed by tribocorrosion and electrochemical techniques. The effects of alloy and of albumin on corrosion depend on the base electrolyte: differences between LC and HC alloy were only observed in NaCl solutions but not in PBS. Albumin increased significantly corrosion of both alloys in PBS solutions while its effect in NaCl was smaller. The wear ranking of the HC and LC alloys also depends on the environment. In the present study, HC CoCrMo alloy had lower wear resistance in NaCl and PBS + albumin than the LC alloy, while no differences between both alloys were found in the other solutions. This was attributed to surface chemical effects affecting third body behaviour. © Springer Science+Business Media, LLC 2011. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SPRINGER | es_ES |
dc.relation.ispartof | Journal of Materials Science Materials in Medicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Alumina balls | es_ES |
dc.subject | Base electrolytes | es_ES |
dc.subject | CoCrMo alloy | es_ES |
dc.subject | Corrosion behaviour | es_ES |
dc.subject | Electrochemical techniques | es_ES |
dc.subject | Low carbon | es_ES |
dc.subject | NaCl solution | es_ES |
dc.subject | PBS solution | es_ES |
dc.subject | Phosphate-buffered solutions | es_ES |
dc.subject | Simulated body fluids | es_ES |
dc.subject | Surface chemical effects | es_ES |
dc.subject | Third body | es_ES |
dc.subject | Tribo-corrosion | es_ES |
dc.subject | Alloys | es_ES |
dc.subject | Corrosion | es_ES |
dc.subject | Sodium chloride | es_ES |
dc.subject | Wear resistance | es_ES |
dc.subject | Cerium alloys | es_ES |
dc.subject | Albumin | es_ES |
dc.subject | Alloy | es_ES |
dc.subject | Aluminum oxide | es_ES |
dc.subject | Carbon | es_ES |
dc.subject | Cobalt chromium molybdenum | es_ES |
dc.subject | Electrolyte | es_ES |
dc.subject | High carbon | es_ES |
dc.subject | phosphate buffered saline | es_ES |
dc.subject | Unclassified drug | es_ES |
dc.subject | Article | es_ES |
dc.subject | Biomedicine | es_ES |
dc.subject | Body fluid | es_ES |
dc.subject | Chemical environment | es_ES |
dc.subject | Electrochemical analysis | es_ES |
dc.subject | friction | es_ES |
dc.subject | Mechanical stress | es_ES |
dc.subject | Oxidation | es_ES |
dc.subject | Polarization | es_ES |
dc.subject | Priority journal | es_ES |
dc.subject | Albumins | es_ES |
dc.subject | Biocompatible Materials | es_ES |
dc.subject | Body Fluids | es_ES |
dc.subject | Electrochemistry | es_ES |
dc.subject | Electrolytes | es_ES |
dc.subject | Materials Testing | es_ES |
dc.subject | Phosphates | es_ES |
dc.subject | Salts | es_ES |
dc.subject | Vitallium | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10856-010-4224-0 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Igual Muñoz, AN.; Mischler, S. (2011). Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys. Journal of Materials Science Materials in Medicine. 22(3):437-450. doi:10.1007/s10856-010-4224-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s10856-010-4224-0 | es_ES |
dc.description.upvformatpinicio | 437 | es_ES |
dc.description.upvformatpfin | 450 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.pmid | 21221728 | |
dc.relation.pasarela | S\211437 | es_ES |
dc.description.references | Rieker CB, Schön R, Köttig P. Development and validation of a second-generation metal-on-metal bearing: laboratory studies and analysis of retrievals. J Arthroplast. 2004;19:5–11. | es_ES |
dc.description.references | Sargeant A, Goswami T. Hip implants: Paper V. Physiological effects. Mater Des. 2006;27:287–307. | es_ES |
dc.description.references | Sargeant A, Goswami T. Hip implants: Paper VI. Ion concentrations. Mater Des. 2007;28:155–71. | es_ES |
dc.description.references | Yan Y, Neville A, Dowson D, Williams S. Tribocorrosion in implants—assessing high carbon and low carbon Co-Cr-Mo alloys by in situ electrochemical measurements. Tribol Int. 2006;39:1509–17. | es_ES |
dc.description.references | Wang A, Yue S, Bobyn JD, Chan FW, Medley JB. Surface characterization of metal-on-metal hip implants tested in a hip simulator. Wear. 1999;225–229:708–15. | es_ES |
dc.description.references | Wang KK, Wang A, Gustavson LJ. Metal-on-metal wear testing of CoCr alloys. In: Disegi JA, Kenedy RL, Pilliar R, editors. Cobalt-base alloys for biomedical applications ASTM STP 1365. Conshohocken, PA: ASTM STP 1365; 1999. p. 135–44. | es_ES |
dc.description.references | Tipper JL, Firkins PJ, Ingham E, Fischer J. Quantitative analysis of the wear and wear debris from low and high carbon content cobalt chrome alloys used in metal on metal total hip replacements. J Mater Sci Mater Med. 1999;10:353–62. | es_ES |
dc.description.references | St John KR, Poggie RA, Zardiackas LD, Afflitto M. Comparison of two cobalt-based alloys for use in metal-on-metal hip prostheses: evaluation of the wear properties in a simulator. In: Disegi JA, Kenedy RL, Pilliar R, editors. Cobalt-base alloys for biomedical applications ASTM STP 1365. West Conshohocken, PA: ASTM STP 1365; 1999. p. 145–55. | es_ES |
dc.description.references | Scholes SC, Unsworth A. Pin-on-plate studies on the effect of rotation on the wear of metal-on-metal samples. J Mater Sci Mater Med. 2001;12:299–303. | es_ES |
dc.description.references | Firkins PJ, Tipper JL, Ingham E, Stone MH, Farrar R, Fisher J. A novel low wearing differential hardness, ceramic-on-metal hip joint prosthesis. J Biomech. 2001;34:1291–8. | es_ES |
dc.description.references | St John KR, Zardiackas LD, Poggie RA. Wear evaluation of cobalt-chromium alloy for use in a metal-on-metal hip prosthesis. J Biomed Mat Res. 2003;68B:1–14. | es_ES |
dc.description.references | Cawley J, Metcalf JEP, Jones AH, Band TJ, Skupien DS. A tribological study of cobalt chromium molybdenum alloys used in metal-on-metal resurfacing hip arthoplasty. Wear. 2003;255:999–1006. | es_ES |
dc.description.references | Varano R, Bobyn JD, Medley JB, Yue S. Why is high carbon important in the tribology of metal-on-metal hip implants? In: 7th World Biomaterials Congress, 87; 2004. | es_ES |
dc.description.references | Varano R, Bobyn JD, Medley JB, Yue S. Effect of microstructure on the dry sliding friction behaviour of CoCrMo alloys used in metal-on-metal hip implants. J Biomed Mat Res. 2006;76B:281–6. | es_ES |
dc.description.references | Varano R, Bobyn JD, Medley JB, Yue S. The effect of microstructure on the wear of cobalt-based alloys used in metal-on-metal hip implants. J Eng Med. 2006;220:145–59. | es_ES |
dc.description.references | Chiba A, Kumagai K, Nomura N, Miyakawa S. Pin-on-disk wear behavior in a like-on-like configuration in a biological environment of high carbon cast and low carbon froged Co-29Cr-6Mo alloys. Acta Biomater. 2007;55:1309–18. | es_ES |
dc.description.references | Yan Y, Neville A, Dowson D. Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments. Wear. 2007;263:1105–11. | es_ES |
dc.description.references | Hiromoto S, Onodera E, Chiba A, Asami K, Hanawa T. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys. Biomaterials. 2005;26:4912–23. | es_ES |
dc.description.references | Wimmer MA, Loos J, Nassutt R, Heitkemper M, Fischer A. The acting wear mechanisms on metal-on-metal hip joint bearings: in vitro results. Wear. 2001;250:129–39. | es_ES |
dc.description.references | Sun D, Wharton JA, Wood RJK. Micro-abrasion mechanisms of cast CoCrMo in simulated body fluids. Wear. 2009;267:1845–55. | es_ES |
dc.description.references | Igual Muñoz A, Casaban Julian L. Influence of electrochemical potential on the tribocorrosion behaviour of high carbon CoCrMo biomedical alloy in simulated body fluids by electrochemical impedance spectroscopy. Electrochim Acta. 2010;55:5428–39. | es_ES |
dc.description.references | Wood RJK, Sun D, Thakare MR, Frutos Rozas A, Wharton JA. Interpretation of electrochemical measurements made during micro-scale abrasion-corrosion. Tribol Int. 2010;43:1218–27. | es_ES |
dc.description.references | Wimmer MA, Sprecher C, Hauert R, Täger G, Fischer A. Tribochemical reaction on metal-on-metal hip joint bearings—in vitro results. Wear. 2003;255:1007–14. | es_ES |
dc.description.references | Stemp M, Mischler S, Landolt D. The effect of contact configuration on the tribocorrosion of stainless steel reciprocating sliding under potentiostatic control. Corros Sci. 2003;45:625–40. | es_ES |
dc.description.references | Radice S, Mischler S. Effect of electrochemical and mechanical parameters on the lubrication behaviour of Al2O3 nanoparticles in aqueous suspensions. Wear. 2006;261:1032–41. | es_ES |
dc.description.references | Landolt D, Mischler S, Stemp M. Electrochemical methods in tribocorrosion: a critical appraisal. Electrochim Acta. 2001;46:3913–29. | es_ES |
dc.description.references | Mischler S, Spiegel A, Stemp M, Landolt D. Influence of passivity on the tribocorrosion of carbon steel in aqueous solution. Wear. 2001;251:1295–307. | es_ES |
dc.description.references | Igual-Muñoz A, Mischler S. Inter-laboratory study on electrochemical methods for the characterization of CoCrMo biomedical alloys in simulated body fluids (EFC 61). European Federation of Corrosion; 2010. | es_ES |
dc.description.references | Landolt D. Corrosion and surface chemistry of metals. Lausanne: CRC Press; 2007. | es_ES |
dc.description.references | Sims C. Cobalt based alloys. New York: Wiley; 1972. p. 260. | es_ES |
dc.description.references | Igual-Muñoz A, Mischler S. Interactive effects of albumin and phosphate ions on the corrosion of CoCrMo implant alloy. J Electrochem Soc. 2007;154:C562–70. | es_ES |
dc.description.references | Milosev I, Strehblow H-H. The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochem Acta. 2003;48:2767–74. | es_ES |
dc.description.references | Hodgson AWE, Kurz S, Virtanen S, Fervel V, Olsson COA, Mischler S. Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochim Acta. 2004;49:2167–78. | es_ES |
dc.description.references | Mischler S. Triboelectrochemical techniques and interpretation methods in tribocorrosion: a comparative evaluation. Tribol Int. 2008;41:573–83. | es_ES |
dc.description.references | Favero M, Stadelmann P, Mischler S. Effect of the applied potential of the near surface microstructure of a 316L steel submitted to tribocorrosion in sulfuric acid. J Phys D Appl Phys. 2006;39:3175–83. | es_ES |
dc.description.references | Bidiville A, Favero M, Stadelmann P, Mischler S. Effect of surface chemistry on the mechanical response of metals in sliding tribocorrosion systems. Wear. 2007;263:207–17. | es_ES |
dc.description.references | Perret J, Boehm-Courjault E, Cantoni M, Mischler S, Beaudouin A, Chitty W, et al. EBSD, SEM and FIB characterisation of subsurface deformation during tribocorrosion of stainless steel in sulphuric acid. Wear (in press). | es_ES |
dc.description.references | Espallargas N, Mischler S. Tribocorrosion behaviour of overlay welded Ni-Cr 625 alloy in sulphuric and nitric acids: electrochemical and chemical effects. Tribol Int. 2010;43:1209–17. | es_ES |
dc.description.references | Kelsall GH, Zhu Y, Spikes HA. Electrochemical effects on friction between metal oxide surfaces in aqueous solutions. J Chem Soc Faraday Trans. 1993;89:267–72. | es_ES |
dc.description.references | Sun D, Wharton JA, Wood RJK. Micro-abrasion-corrosion of cast CoCrMo—effects of micron and sub-micron sized abrasives. Wear. 2009;267:52–60. | es_ES |
dc.description.references | Landolt D. Passivity issues in tribocorrosion. In: Philippe M, Vincent M, editors. Passivation of metals and semiconductors, and properties of thin oxide layers. Amsterdam: Elsevier Science; 2006. p. 477–87. | es_ES |
dc.description.references | Mischler S, Spiegel A, Landolt D. The role of passive oxide films on the degradation of steel in tribocorrosion systems. Wear. 1999;225–229:1078–87. | es_ES |
dc.description.references | Stemp M, Mischler S, Landolt D. The effect of mechanical and electrochemical parameters on the tribocorrosion rate of stainless steel in sulphuric acid. Wear. 2003;255:466–75. | es_ES |