Mostrar el registro sencillo del ítem
dc.contributor.author | San Pedro-Galan, Tania | es_ES |
dc.contributor.author | Gammoudi, Najet | es_ES |
dc.contributor.author | Peiró Barber, Rosa Mª | es_ES |
dc.contributor.author | Olmos Castelló, Antonio | es_ES |
dc.contributor.author | Gisbert Domenech, María Carmen | es_ES |
dc.date.accessioned | 2018-06-09T04:21:31Z | |
dc.date.available | 2018-06-09T04:21:31Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1471-2229 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/103709 | |
dc.description.abstract | [EN] Background: Somatic embryogenesis is the preferred method for cell to plant regeneration in Vitis vinifera L. However, low frequencies of plant embryo conversion are commonly found. In a previous work we obtained from cut-seeds of a grapevine infected with the Grapevine leafroll associated viruses 1 and 3 (GLRaV-1 and GLRaV-3), high rates of direct regeneration, embryo plant conversion and sanitation. The aim of this study is to evaluate the usefulness of this procedure for regeneration of other grapevine varieties which include some infected with one to three common grapevine viruses (GLRaV-3, Grapevine fanleaf virus (GFLV) and Grapevine fleck virus (GFkV)). As grapevine is highly heterozygous, it was necessary to select from among the virus-free plants those that regenerated from mother tissues around the embryo, (true-to-type). Results: Somatic embryogenesis and plant regeneration were achieved in a first experiment, using cut-seeds from the 14 grapevine varieties Airen, Cabernet Franc, Cabernet Sauvignon, Mencia, Merlot, Monastrell, Petit Verdot, Pinot Blanc (infected by GFLV and GFkV), Pinot Gris, Pinot Meunier, Pinot Noir, Syrah, Tempranillo (infected by GFLV), and Verdil. All regenerated plants were confirmed to be free of GFkV whereas at least 68% sanitation was obtained for GFLV. The SSR profiles of the virus-free plants showed, in both varieties, around 10% regeneration from mother tissue (the same genetic make-up as the mother plant). In a second experiment, this procedure was used to sanitize the varieties Cabernet Franc, Godello, Merlot and Valenci Blanc infected by GLRaV-3, GFkV and/or GFLV. Conclusions: Cut-seeds can be used as explants for embryogenesis induction and plant conversion in a broad range of grapevine varieties. The high regeneration rates obtained with this procedure facilitate the posterior selection of true-to-type virus-free plants. A sanitation rate of 100% was obtained for GFkV as this virus is not seed-transmitted. However, the presence of GLRaV-3 and GFLV in some of the regenerated plants showed that both viruses are seed-transmitted. The regeneration of true-to-type virus-free plants from all infected varieties indicates that this methodology may represent an alternative procedure for virus cleaning in grapevine. | es_ES |
dc.description.sponsorship | The study was supported by the INIA (Instituto Nacional de Investigaciones Agrarias) projects RTA2011-00067-C04, RTA2014-00061-C03 and the MINECO (Ministerio de Economia y Competitividad) project CGL2015-70843-R, all co-funded with FEDER Funds. TSP has a fellowship (01/14-FSE-22) from the Instituto Valenciano de Investigaciones Agrarias (IVIA). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer (Biomed Central Ltd.) | es_ES |
dc.relation.ispartof | BMC Plant Biology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Grapevine | es_ES |
dc.subject | Direct and indirect embryogenesis | es_ES |
dc.subject | Microsatellites | es_ES |
dc.subject | TDZ | es_ES |
dc.subject | Sanitation | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.subject.classification | MICROBIOLOGIA | es_ES |
dc.title | Somatic embryogenesis from seeds in a broad range of Vitis vinifera L. varieties: rescue of virus-free plants | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s12870-017-1159-3 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2015-70843-R/ES/DESARROLLO DE PROTOCOLOS DE CONSERVACION IN VITRO Y DE CRIOCONSERVACION DE GERMOPLASMA DE VID: ANALISIS DE LA VARIABILIDAD Y CONSERVACION DE PORTAINJERTOS Y VARIEDADES MINORIT/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2011-00067-C04-04/ES/Desarrollo y aplicación de distintas técnicas de cultivo in vitro para el saneamiento, micropropagación y conservación de variedades de vid. Desarrollo de un sistema de purificación de protoplastos de vid adecuado para el estudio de la infección y de la replicación vírica/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | San Pedro-Galan, T.; Gammoudi, N.; Peiró Barber, RM.; Olmos Castelló, A.; Gisbert Domenech, MC. (2017). Somatic embryogenesis from seeds in a broad range of Vitis vinifera L. varieties: rescue of virus-free plants. BMC Plant Biology. 17(226):1-12. https://doi.org/10.1186/s12870-017-1159-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s12870-017-1159-3 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 226 | es_ES |
dc.identifier.pmid | 29187140 | en_EN |
dc.identifier.pmcid | PMC5706158 | en_EN |
dc.relation.pasarela | S\343302 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Martelli GP. Directory of virus and virus-like diseases of the grapevine and their agents. J Pant Pathol. 2014;96(Suppl 1):1–136. | es_ES |
dc.description.references | Perrone I, Chitarra W, Boccacci P, Gambino G. Grapevine-virus-environment interactions: an intriguing puzzle to solve. New Phytol. 2017;213:983–7. | es_ES |
dc.description.references | Gambino G, Bondaz J, Gribaudo I. Detection and elimination of viruses in callus, somatic embryos and regenerated plantlets of grapevine. Eur J Plant Pathol. 2006;114:397–404. | es_ES |
dc.description.references | Duran-Vila N, Juárez J, Arregui JM. Production of viroid-free grapevines by shoot tip culture. Am J Enol Vitic. 1998;39:217–20. | es_ES |
dc.description.references | Youssef SA, Al-Dhaher MMA, Shalaby AA. Elimination of grapevine fanleaf virus (GFLV) and grapevine leaf roll-associated virus-1 (GLRaV-1) from infected grapevine plants using meristem tip culture. Int J Virol. 2009;5:89–99. | es_ES |
dc.description.references | Díaz-Barrita AJ, Norton M, Martínez-Peniche RA, Uchanski M, Mulwa R, Skirivin RM. The use of thermotherapy and in vitro meristem culture to produce virus-free ‘chancellor’ grapevines. Int J Fruit Sci. 2009;7:15–25. | es_ES |
dc.description.references | Hancevic A, Zdunic G, Voncina D, Radic T. Virus composition influences virus elimination success and in vitro growth characteristics of the grapevine cv. Plavac Mali J Plant Pathol. 2015;97:199–202. | es_ES |
dc.description.references | Skiada FG, Maliogka VI, Katis NI, Eleftheriou EP. Elimination of Grapevine rupestris stem pitting-associated virus (GRSPaV) from two Vitis vinifera cultivars by in vitro chemotherapy. Eur J Plant Pathol. 2013;135:407–14. | es_ES |
dc.description.references | Guţă IC, Buciumeanu EC, Vişoiu E. Elimination of Grapevine fleck virus by in vitro chemotherapy. Not Bot Horti Agrobo. 2014;42:115–8. | es_ES |
dc.description.references | Borroto-Fernandez EG, Sommerbauer T, Popowich E, Schartl A, Laimer M. Somatic embryogenesis from anthers of the autochthonous Vitis vinifera cv. Domina leads to Arabis mosaic virus-free plants. Eur J Plant Pathol. 2009;124:171–4. | es_ES |
dc.description.references | Goussard PG, Wiid J, Kasdorf GGF. The effectiveness of in vitro somatic embryogenesis in eliminating fanleaf virus and leafroll associated viruses from grapevines. S Afr J Enol Vitic. 1991;12:77–81. | es_ES |
dc.description.references | Peiró R, Gammoudi N, Yuste A, Olmos A, Gisbert C. Mature seeds for in vitro sanitation of the Grapevine leafroll associated virus (GLRaV-1 and GLRaV-3) from grape (Vitis vinifera L.). Spanish J Agric Res. 2015;doi: https://doi.org/10.5424/sjar/2015132-7094 . | es_ES |
dc.description.references | Jiménez-Martínez JH, Gutiérrez-Matínez MG, Franco-Mora O, González-Huerta A, Gutiérrez-Ibáñez AT. Micropropagation of wild grapevines (Vitis spp.) of Central Mexico. Phyton. 2013;82:107–12. | es_ES |
dc.description.references | Tsvetkov I, Dzhambazova T, Kondakova V, Batchvarova R. In vitro long-term storage and regeneration of bulgarian grapevine variety ‘Velika’ via repetitive somatic embryogenesis. Universal J Plant Sci. 2014;2:48–51. | es_ES |
dc.description.references | Saporta R, San Pedro T, Gisbert C. Attemps at grapevine (Vitis vinifera L.) breeding through genetic transformation: the main limiting factors. Vitis. 2016;55:173–86. | es_ES |
dc.description.references | Martinelli L, Gribaudo I. Somatic embryogenesis in grapevine. In: Roubelakis-Angelakis KA, editor. Molecular biology and biotechnology of the grapevine. Dordrecht: Kluwer Acedemic Publishers; 2001. p. 327–51. | es_ES |
dc.description.references | Dhekney SA, Li ZT, Compton ME, Gray DJ. Optimizing initiation and manteinance of Vitis embryogenic cultures. Hortscience. 2009;44:1400–6. | es_ES |
dc.description.references | Prado MJ, Grueiro MP, González MV, Testillano PS, Domínguez C, López M, Rey M. Efficient plant regeneration through somatic embryogenesis from anthers and ovaries of six autochthonous grapevine cultivars from Galicia (Spain). Sci Hort. 2010;125:342–52. | es_ES |
dc.description.references | Goebel-Tourand I, Mauro MC, Sossountazov L, Miginiac E, Deloire A. Arrest of somatic embryo development in grapevine: histological characterization and the effect of ABA, BAP ans zeatin in stimulating plantlet development. Plant Cell Tissue Organ Cult. 1993;33:91–103. | es_ES |
dc.description.references | López-Perez AJ, Carreño J, Dabauza M. Somatic embryo germination and plant regeneration of three grapevine cvs: effect of IAA, GA3 and embryo morphology. Vitis. 2006;45:141–3. | es_ES |
dc.description.references | Ben Amar A, Cobanov P, Boonrod K, Krczal G, Bouzid S, Ghorbel A, Reustle GM. Efficient procedure for grapevine embryogenic suspension establishment and plant regeneration: role of conditioned medium for cell proliferation. Plant Cell Rep. 2007;26:1439–47. | es_ES |
dc.description.references | Ramming DW, Emershad RL. Embryo culture of early ripering seeded grapes (Vitis vinifera) genoypes. Hortscience. 1990;25:339–42. | es_ES |
dc.description.references | Côte F, Teisson C, Perrier X. Somaclonal variation rate evolution in plant tissue culture: contribution to understanding through a statistical approach. In vitro Cell Dev Biol Plant. 2001;37:539–42. | es_ES |
dc.description.references | Sharma SK, Bryan GJ, Winfield MO, Millam S. Stability of potato (Solanum tuberosum L.) plants regenerated via somatic embryos, axillary bud proliferated shoots, microtubers and true potato seeds: a comparative phenotypic, cytogenetic and molecular assessment. Planta. 2007;226:1449–58. | es_ES |
dc.description.references | Paul S, Dam A, Bhattacharyya A, Bandyopadhyay TK. An efficient regeneration system via direct and indirect somatic embryogenesis for the medicinal tree Murraya koenigii. Plant Cell Tissue Organ Cult. 2011;105:271–83. | es_ES |
dc.description.references | López-Pérez AJ, Carreño J, Martínez-Cutillas A, Dabauza M. High embryogenic ability and plant regeneration of table grapevine cultivars (Vitis vinifera L.) induced by activated charcoal. Vitis. 2005;44:79–85. | es_ES |
dc.description.references | Gisbert C, Prohens J, Nuez F. Efficient regeneration in two potential new crops for subtropical climates, the scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) explants. New Zeal J Crop Hort. 2006;34:55–62. | es_ES |
dc.description.references | Joshi M, Sujatha K, Hazra S. Effect of TDZ and 2,4-D on peanut somatic embryogenesis and in vitro bud development. Plant Cell Tissue Organ Cult. 2008;94:85–90. | es_ES |
dc.description.references | Gambino G, Di Matteo D, Gribaudo I. Elimination of grapevine fanleaf virus from three Vitis vinifera cultivars by somatic embryogenesis. Eur J Plant Pathol. 2009;123:57–60. | es_ES |
dc.description.references | Martinelli L, Gribaudo I, Bertoldi D, Candioli E, Poletti V. High efficiency somatic embryogenesis and plant germination in grapevine cultivars chardonnay and Brachetto a grappolo lungo. Vitis. 2001;40:111–5. | es_ES |
dc.description.references | Oláh R, Szegedi E, Ruthner S, Korbuly J. Thidiazuron-induced regeneration and genetic transformation of grapevine rootstock varieties. Vitis. 2003;42:133–6. | es_ES |
dc.description.references | Oláh R, Zok A, Pedryc A, Howard S, Kovács LG. Somatic embryogenesis in a broad spectrum of grape genotypes. Sci Hort. 2009;120:134–7. | es_ES |
dc.description.references | Franks T, Botta R, Thomas MR. Chimerism in grapevines: implications for cultivar identity, ancestry and genetic improvement. Theor Appl genet. 2002;104:192-9. [34] Vezzulli S, Leonardelli L, Malossino U, Stefanini M, Velasco R, Moser C. Pinot blanc and pinot gris arose as independent somatic mutations of pinot noir. J Exp Bot. 2012;63:6359–69. | es_ES |
dc.description.references | Digiaro M, Martelli GP, Savino V. Proceedings of the Mediterranean network on grapevine closteroviruses 1992–1997 and the viroses and virus-like diseases of the grapevine a bibliographic report, 1985–1997. 1st ed. Bari: CIHEAM; 1999. | es_ES |
dc.description.references | Lazar J, Kölber M, Lehoczky J. Detection of some nepoviruses (GFV, GFV-YM, GCMV, ArMV) in the seeds and seedlings of grapevines by ELISA. Kertgazdasag. 1990;22:58–72. | es_ES |
dc.description.references | Gasparro M, Caputo AR, Forleo LR, Perniola R, Alba V, Milella RA, Antonacci D. Study of main grapevine viruses transmission in breeding programs. BIO Web Conferences. 2016;7:01039. | es_ES |
dc.description.references | Gomez-Garay A, Manzanera JA, Beatriz PB. Embryogenesis in oak species. A review Forest Syst. 2014;23:191–8. | es_ES |
dc.description.references | Pullman GS, Olson K, Fischer T, Egertsdotter U, Frampton J, Bucalo K. Fraser fir somatic embryogenesis: high frequency initiation, maintenance, embryo development, germination and cryopreservation. New For. 2016;47:453–80. | es_ES |
dc.description.references | Corredoira E, Vieitez AM, Ballester A. Somatic embryogenesis in elm. Ann Bot. 2002;89:637–44. | es_ES |
dc.description.references | Royo C, Carbonell-Bejerano P, Torres-Pérez R, Nebish A, Martínez O, Rey M, Aroutiounian R, Ibáñez J, Martínez-Zapater JM. Developmental, transcriptome, and genetic alterations associated with parthenocarpy in the grapevine seedless somatic variant Corinto bianco. J Exp Bot. 2016;67:259–73. | es_ES |
dc.description.references | This P, Jung A, Boccacci P, Borrego J, Botta R, Constantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira Monterio F, Grando S, Ibanez J, Lacombe T, Laucou V, Magalhaes R, Meredith CP, Milani N, Peterlounger E, Renger F, Zulini L, Maul E. Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet. 2014;109:1448–58. | es_ES |
dc.description.references | Milla-Tapia A, Cabezas JA, Cabello F, Lacombe T, Martínez-Zapater JM, Hinrichsen P, Cervera MT. Determining the Spanish origin of representative ancient American grapevine varieties. Am J Enol Vitic. 2007;58:242–51. | es_ES |
dc.description.references | Ibáñez J, Vargas AM, Palancar M, Borrego J, de Andrés MT. Genetic relationships among table-grape varieties. Am J Enol Vitic. 2009;60:35–42. | es_ES |
dc.description.references | Goussard PG, Wiid J. The elimination of Fanleaf virus from grapevines using in vitro somatic embryogenesis combined with heat therapy. South Afr J Enol Vitic. 1992;13:81–3. | es_ES |
dc.description.references | Guţă IC, Buciumeanu EC, Gheorghe RN, Teodorescu A. Solutions to eliminate leafroll associated virus serotype 1+3 from Vitis vinifera L. cv. Ranâi Magaraci. Rom Biotechnol Lett. 2010;15:72–8. | es_ES |
dc.description.references | Pannatoni A, Luvisi A, Triolo E. Selective chemotherapy on Grapevine leafroll-associated virus-1 and -3. Phytoparasitica. 2011;39:503–8. | es_ES |
dc.description.references | López-Fabuel I, Wetzel T, Bertolini E, Bassler A, Vidal E, Torres LB, Yuste A, Olmos A. Real-time multiplex RT-PCR for the simultaneous detection of the five main grapevine viruses. J Virol Methods. 2013;188:21–4. | es_ES |
dc.description.references | Pearce I, Coombe BG. Grapevine phenology. In: Dry PR, Coombe BG, editors. Grapevine growth stages – the modified E-L system. Viticulture 1 – resources. 2nd ed. Winetitles: Australia; 2004. p. 150–66. | es_ES |
dc.description.references | San Pedro T, Peiró R, Villanova J, Olmos A, Gisbert C. In vitro multiplication of Vitis Vinifera L. cv. ‘Monastrell’. Electron J Biotechnol. 2017;27:80–3. | es_ES |
dc.description.references | Gisbert C. Utilización de la citometría de flujo para analizar la ploidía en plantas. 2010. http://hdl.handle.net/10251/7781 . Accessed 11 Apr 2017. | es_ES |