Mostrar el registro sencillo del ítem
dc.contributor.author | Escortell Pérez, Mª Amparo | es_ES |
dc.contributor.author | Gimenez Fayos, Maite | es_ES |
dc.contributor.author | Rosso, Paolo | es_ES |
dc.date.accessioned | 2018-06-10T04:28:24Z | |
dc.date.available | 2018-06-10T04:28:24Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1135-5948 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/103747 | |
dc.description.abstract | [ES] Uno de los retos más complejos a los que se enfrenta el Procesamiento de Lenguaje Natural es el de determinar la polaridad de un tweet (positiva, negativa o neutra) cuando en éste aparece lenguaje figurado, es particularmente complejo en los textos cortos y agramaticales que podemos encontrar en las redes sociales. Este trabajo presenta un estudio exhaustivo sobre la capacidad de distintos recursos léxicos de emociones para analizar la polaridad de un conjunto de datos extraídos de Twitter, detallando el impacto de cada uno de los recursos sobre distintas formas de lenguaje figurado como pueden ser la ironía y el sarcasmo que encontramos profusamente en este corpus. Los resultados obtenidos muestran indicios que apuntan a que la inclusión de información relativa a las emociones ayuda a clasificar correctamente la polaridad tanto a nivel global como a nivel del lenguaje figurado o literal. Palabras clave: Análisis de sentimientos, emociones, lenguaje figurado, twitter, ironía, sarcasmo, semeval, polaridad | es_ES |
dc.description.abstract | [EN] One of the most challenging tasks in Natural Language Processing is to determine the polarity of a tweet (positive, negative or neutral) when figurative language is present, especially in the short and ungrammatical texts that can be found in social media. In this paper we present a comprehensive study of the capacity of several emotional lexicons for Sentiment Analysis of Figurative Language in Twitter, detailing how each resource impacts on different figurative language devices such as sarcasm and irony. There are indications in our results that suggest that using emotional information improves the performance of a Sentiment Analysis model regardless of the presence or not of figurative language in the texts analyzed. | es_ES |
dc.description.sponsorship | Este trabajo se ha desarrollado en el marco del proyecto de investigación SomEMBED (TIN2015-71147-C2-1-P) del Ministerio de Economía y Sostenibilidad (MINECO). Asimismo, el trabajo de la segunda autora ha sido financiado a través del Programa de Ayudas de Investigación y Desarrollo de la Universitat Politècnica de València (PAID 2015). | es_ES |
dc.language | Español | es_ES |
dc.publisher | Sociedad Española para el Procesamiento del Lenguaje Natural | es_ES |
dc.relation.ispartof | PROCESAMIENTO DEL LENGUAJE NATURAL | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Análisis de sentimientos | es_ES |
dc.subject | Emociones | es_ES |
dc.subject | Lenguaje figurado | es_ES |
dc.subject | es_ES | |
dc.subject | Ironía | es_ES |
dc.subject | Sarcasmo | es_ES |
dc.subject | Polaridad | es_ES |
dc.subject | Sentiment analysis | es_ES |
dc.subject | emotions | es_ES |
dc.subject | Figurative language | es_ES |
dc.subject | Irony | es_ES |
dc.subject | Sarcasm | es_ES |
dc.subject | Semeval | es_ES |
dc.subject | Polarity | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | El impacto de las emociones en el análisis de la polaridad en textos con lenguaje figurado en Twitter | es_ES |
dc.type | Artículo | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-71147-C2-1-P/ES/COMPRENSION DEL LENGUAJE EN LOS MEDIOS DE COMUNICACION SOCIAL - REPRESENTANDO CONTEXTOS DE FORMA CONTINUA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Escortell Pérez, MA.; Gimenez Fayos, M.; Rosso, P. (2017). El impacto de las emociones en el análisis de la polaridad en textos con lenguaje figurado en Twitter. PROCESAMIENTO DEL LENGUAJE NATURAL. (58):85-92. http://hdl.handle.net/10251/103747 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/5416 | es_ES |
dc.description.upvformatpinicio | 85 | es_ES |
dc.description.upvformatpfin | 92 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 58 | es_ES |
dc.relation.pasarela | S\343624 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |