Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Soleymani, Fazlollah | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Haghani, F. Khaksar | es_ES |
dc.date.accessioned | 2018-06-11T04:21:50Z | |
dc.date.available | 2018-06-11T04:21:50Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0096-3003 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/103764 | |
dc.description.abstract | [EN] We present a parametric family of iterative methods with memory for solving of nonlinear problems including Kurchatov¿s scheme, preserving its second-order of convergence. By using the tools of multidimensional real dynamics, the stability of members of this family is analyzed on low-degree polynomials, showing some elements of this class more stable behavior than the original Kurchatov¿s method. The iteration is extended for multi-dimensional case. Computational efficiencies of proposed technique is discussed and compared with the existing methods. A couple of numerical examples are considered to test the performance of the new family of iterations. | es_ES |
dc.description.sponsorship | The authors thank to the anonymous referees for their valuable comments and for the suggestions that have improved the final version of the paper. This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Mathematics and Computation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | With memory | es_ES |
dc.subject | R-order | es_ES |
dc.subject | Divided difference operator | es_ES |
dc.subject | Stability | es_ES |
dc.subject | Bifurcation diagrams | es_ES |
dc.subject | Chaos | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A family of Kurchatov-type methods and its stability | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.amc.2016.09.021 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2019-01-01 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Soleymani, F.; Torregrosa Sánchez, JR.; Haghani, FK. (2017). A family of Kurchatov-type methods and its stability. Applied Mathematics and Computation. 294:264-279. https://doi.org/10.1016/j.amc.2016.09.021 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.amc.2016.09.021 | es_ES |
dc.description.upvformatpinicio | 264 | es_ES |
dc.description.upvformatpfin | 279 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 294 | es_ES |
dc.relation.pasarela | S\324453 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |