Mostrar el registro sencillo del ítem
dc.contributor.author | Carreño, A. | es_ES |
dc.contributor.author | Vidal-Ferràndiz, Antoni | es_ES |
dc.contributor.author | Ginestar Peiro, Damián | es_ES |
dc.contributor.author | Verdú Martín, Gumersindo Jesús | es_ES |
dc.date.accessioned | 2018-06-11T04:33:58Z | |
dc.date.available | 2018-06-11T04:33:58Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/103798 | |
dc.description.abstract | [EN] Determination of the reactor kinetic characteristics is very important for the design and development of a new reactor system. In this sense, the computation of lambda modes associated to a nuclear power reactor has interest since these modes can be used to analyze the reactor criticality and to develop modal methods to analyze transient situations in the reactor. In this paper, the lambda problem has been discretized using a high order finite element method to obtain a generalized algebraic eigenvalue problem. A multilevel method is proposed to solve this generalized eigenvalue problem combining a hierarchy of meshes with a Modified Block Newton method. The Krylov-Schur method is used to compare the efficiency of the multilevel method solving several benchmark problems. | es_ES |
dc.description.sponsorship | This work has been partially supported by Spanish Ministerio de Economía y Competitividad under projects ENE2014-59442-P, MTM2014-58159-P and BES-2015-072901 | |
dc.language | Inglés | es_ES |
dc.publisher | UP4 Institute of Sciences, S.L. | es_ES |
dc.relation.ispartof | Applied Mathematics and Nonlinear Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Multilevel method | es_ES |
dc.subject | Finite element method | es_ES |
dc.subject | Modified block Newton method | es_ES |
dc.subject | Lambda modes | es_ES |
dc.subject | Generalized eigenvalue problem | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.title | Multilevel method to compute the lambda modes of the neutron diffusion equation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.21042/AMNS.2017.1.00019 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2014-59442-P/ES/DESARROLLO DE NUEVOS MODELOS Y CAPACIDADES EN EL SISTEMA DE CODIGOS ACOPLADO VALKIN%2FTH-3D. VERIFICACION, VALIDACION Y CUANTIFICACION DE INCERTIDUMBRES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-58159-P/ES/PRECONDICIONADORES PARA SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE MINIMOS CUADRADOS, CALCULO DE VALORES PROPIOS Y APLICACIONES TECNOLOGICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2015-072901/ES/BES-2015-072901/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Carreño, A.; Vidal-Ferràndiz, A.; Ginestar Peiro, D.; Verdú Martín, GJ. (2017). Multilevel method to compute the lambda modes of the neutron diffusion equation. Applied Mathematics and Nonlinear Sciences. 2(1):225-236. https://doi.org/10.21042/AMNS.2017.1.00019 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.21042/AMNS.2017.1.00019 | es_ES |
dc.description.upvformatpinicio | 225 | es_ES |
dc.description.upvformatpfin | 236 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2444-8656 | es_ES |
dc.relation.pasarela | S\342088 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |