Mostrar el registro sencillo del ítem
dc.contributor.author | Payri, Raul | es_ES |
dc.contributor.author | Gimeno, Jaime | es_ES |
dc.contributor.author | Marti-Aldaravi, Pedro | es_ES |
dc.contributor.author | Alarcón-Herrera, Mary Yilbary | es_ES |
dc.date.accessioned | 2018-06-15T04:24:29Z | |
dc.date.available | 2018-06-15T04:24:29Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1678-5878 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/104130 | |
dc.description.abstract | [EN] The injector dynamics have a strong impact on spray behavior, therefore on combustion efficiency and pollutant emissions. Nozzle flow and spray coupled simulations are useful tools to analyze the effect of nozzle geometry, and they could be used also to study the effect of needle movement. In this work, three different approximations to the same needle lift law are employed in an Eulerian Spray Atomization (ESA) model. The main advantage of this model is that is able to simulate nozzle flow and spray seamlessly. Engine Combustion Network (ECN) Spray A conditions are simulated. Results show that the experimental needle lift law can be used without any fitting to a smoothed expression, but all details of the needle dynamics must be considered in order to properly predict mass flow rate and spray penetration. Additionally, it has been shown that needle dynamics has a strong impact on heating effects inside the nozzle. | es_ES |
dc.description.sponsorship | This research was performed in the frame of the project "Estudio de la interaccion chorro-pared en condiciones realistas de motor (SPRAY WALL)" reference TRA2015-67679-c2-1-R from Ministerio de Economia y Competitividad (Spanish Ministry of Economy). | |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of the Brazilian Society of Mechanical Sciences and Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Multi-phase | es_ES |
dc.subject | CFD | es_ES |
dc.subject | Needle dynamics | es_ES |
dc.subject | Atomization | es_ES |
dc.subject | Fuel injection | es_ES |
dc.subject | Moving mesh | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Numerical simulation of needle movement nozzle flow coupled with spray for a diesel injector using an Eulerian spray atomization model | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s40430-017-0801-1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2015-67679-C2-1-R/ES/ESTUDIO DE LA INTERACCION CHORRO-PARED EN CONDICIONES REALISTAS DE MOTOR/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-07-01 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Payri, R.; Gimeno, J.; Marti-Aldaravi, P.; Alarcón-Herrera, MY. (2017). Numerical simulation of needle movement nozzle flow coupled with spray for a diesel injector using an Eulerian spray atomization model. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 7(39):2585-2592. https://doi.org/10.1007/s40430-017-0801-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s40430-017-0801-1 | es_ES |
dc.description.upvformatpinicio | 2585 | es_ES |
dc.description.upvformatpfin | 2592 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 39 | es_ES |
dc.relation.pasarela | S\338897 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Fajgenbaum R, dos Santos RG (2016) Influence of fuel temperature on atomization parameters in a pressure-swirl atomizer from a port fuel injector by Shadowgraphy technique. J Braz Soc Mech Sci Eng 38:1877–1892. doi: 10.1007/s40430-015-0443-0 | es_ES |
dc.description.references | He Z, Guo G, Tao X, Zhong W, Leng X, Wang Q (2016) Study of the effect of nozzle hole shape on internal flow and spray characteristics. Int Commun Heat Mass Transf 71:1–8. doi: 10.1016/j.icheatmasstransfer.2015.12.002 | es_ES |
dc.description.references | Loaiza JCV, Sánchez FZ, Braga SL (2016) Combustion study of reactivity-controlled compression ignition (RCCI) for the mixture of diesel fuel and ethanol in a rapid compression machine. J Braz Soc Mech Sci Eng 38:1073–1085. doi: 10.1007/s40430-015-0400-y | es_ES |
dc.description.references | Salvador FJ, Romero JV, Roselló MD, Jaramillo D (2015) Numerical simulation of primary atomization in diesel spray at low injection pressure. J Comput Appl Math 291:94–102. doi: 10.1016/j.cam.2015.03.044 | es_ES |
dc.description.references | Strotos G, Koukpuvinis P, Theodorakakos A (2015) Transient heating effects in high pressure Diesel injector nozzles. Int J Heat Fluid Flow 51:257–267. doi: 10.1016/j.ijheatfluidflow.2014.10.010 | es_ES |
dc.description.references | Macian V, Bermúdez V, Payri R, Gimeno J (2003) New technique for determination of internal geometry of a Diesel nozzle with the use of silicone methodology. Exp Tech 39:39–43. doi: 10.1111/j.1747-1567.2003.tb00107.x | es_ES |
dc.description.references | Kastengren AL, Tiloco FZ, Powell CF, Manin J, Pickett LM, Payri R, Bazyn T (2013) Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior. Atom Sprays 22:1011–1052. doi: 10.1615/AtomizSpr.006309 | es_ES |
dc.description.references | Kastengren AL, Tiloco FZ, Duke DJ, Powell CF, Zhang X, Moon S (2014) Time-resolved X-ray radiography of sprays from engine combustion network Spray A diesel injectors. Atom Sprays 24:251–272. doi: 10.1615/AtomizSpr.2013008642 | es_ES |
dc.description.references | Payri R, Gimeno J, Viera JP, Plazas AH (2013) Needle lift profile influence on the vapor phase penetration for a prototype diesel direct acting piezoelectric injector. Fuel 113:257–265. doi: 10.1016/j.fuel.2013.05.057 | es_ES |
dc.description.references | Lee WG, Reitz RD (2009) A numerical investigation of transient flow and cavitation within Minisac and VCO Diesel injector nozzles. In: Proceedings of the 2009 spring technical conference of the ASME internal combustion engine division, pp 643–653. doi: 10.1115/ICES2009-76148 | es_ES |
dc.description.references | Bermúdez V, Payri R, Salvador FJ, Plazas AH (2005) Study of the influence of nozzle seat type on injection rate and spray behavior. IMechE. Part D. J Autom Eng 219:677–689. doi: 10.1243/095440705X28303 | es_ES |
dc.description.references | Vallet A, Burluka AA, Borghi R (2001) Development of a Eulerian model for the “Atomization” of a liquid jet. Atom Sprays 11:619–642. doi: 10.1615/AtomizSpr.v11.i6.20 | es_ES |
dc.description.references | García-Oliver JM, Pastor JM, Pandal A, Trask N, Baldwing E (2013) Diesel Spray CFD simulations based on the $$\Sigma $$ Σ - $$Y$$ Y Eulerian atomization model. Atom Sprays 23:71–95. doi: 10.1615/AtomizSpr.007198 | es_ES |
dc.description.references | Bardi M, Payri R, Malbec LM, Bruneaux G, Pickett LM, Manin J, Bazyn T, Genzale C (2012) Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels. Atom Sprays 22:807–842. doi: 10.1615/AtomizSpr.2013005837 | es_ES |
dc.description.references | Kösters A, Karlsson A (2016) Validation of the VSB2 spray model against Spray A and Spray H. Atom Sprays 26(8):775–798. doi: 10.1615/AtomizSpr.2015011670 | es_ES |
dc.description.references | Salvador FJ, Gimeno J, Pastor JM, Martí-Aldaraví P (2015) Effect of turbulence model and inlet boundary condition on the Diesel spray behavior by an Eulerian spray atomization (ESA) model. Int J Multiph Flow 65:108–116. doi: 10.1016/j.ijmultiphaseflow.2014.06.003 | es_ES |
dc.description.references | Desantes JM, García-Oliver JM, Pastor JM, Pandal A, Baldwin E, Shcmidt DP (2015) Coupled/decoupled spray simulation comparison of the ECN spray A condition with the $$\Sigma $$ Σ - $$Y$$ Y Eulerian atomization model. Int J Multiph Flow 80:89–99. doi: 10.1016/j.ijmultiphaseflow.2015.12.002 | es_ES |
dc.description.references | Petranović Z, Edelbauer W, Vujanović M, Duić N (2016) Modelling of spray and combustion processes by using the Eulerian multiphase approach and detailed chemical kinetics. Fuel 191:25–35. doi: 10.1016/j.fuel.2016.11.051 | es_ES |
dc.description.references | Anvari S, Taghavifar H, Khalilarya S, Jafarmadar S (2016) Numerical simulation of diesel injector nozzle flow and in-cylinder spray evolution. Appl Math Model 40:8617–8629. doi: 10.1016/j.apm.2016.05.017 | es_ES |
dc.description.references | Desantes JM, Payri R, Gimeno J, Martí-Aldaraví P (2014) Simulation of the first millimeters of the diesel Spray by an Eulerian spray atomization model applied on ECN Spray A injector. SAE Technical Paper 2014-01-1418. doi: 10.4271/2014-01-1418 | es_ES |
dc.description.references | Payri R, Ruiz S, Gimeno J, Martí-Aldaraví P (2015) Verification of a new CFD compressible segregated and multi-phase solver with different flux update-equations sequences. Appl Math Model 39:851–861. doi: 10.1016/j.apm.2014.07.011 | es_ES |
dc.description.references | Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comp Phys 12:620–631. doi: 10.1063/1.168744 | es_ES |
dc.description.references | Desantes JM, Payri R, Pastor JM, Gimeno J (2005) Experimental characterization of internal nozzle flow and diesel spray behavior. Part 1: non-evaporative conditions. Atom Sprays 17:315–345. doi: 10.1615/AtomizSpr.v15.i5.20 | es_ES |
dc.description.references | Payri R, Gimeno J, Martí-Aldaraví P, Carreres M (2015) Assessment on internal nozzle flow initialization in diesel spray simulations. SAE Technical Paper 2015-01-0921. doi: 10.4271/2015-01-0921 | es_ES |
dc.description.references | Rybdylova O, Al Qubeissi M, Braun M, Crua C, Manin J, Pickett LM, de Sercey G, Sazhina EM, Sazhin SS, Heikal M (2016) A model for droplet heating and its implementation into ANSYS Fluent. Int Commun Heat Mass Transf 76:265–270. doi: 10.1016/j.icheatmasstransfer.2016.05.032 | es_ES |
dc.description.references | Kastengren AL, Powell CF, Wang Y, Im KS, Wang J (2009) X-ray radiography measurements of diesel spray structure at engine-like ambient density. Atom Sprays 19:1031–1044. doi: 10.1615/AtomizSpr.v19.i11.30 | es_ES |
dc.description.references | Xue Q, Battistoni M, Som S, Quan S, Senecal PK, Pomraning E, Schmidt DP (2014) Eulerian CFD modelling of coupled nozzle flow and spray with validation against X-ray radiography data. SAE Int J Engines 7:1061–1072. doi: 10.4271/2014-01-1425 | es_ES |