Mostrar el registro sencillo del ítem
dc.contributor.author | Mauro, Francisco | es_ES |
dc.contributor.author | Monleón, V. J. | es_ES |
dc.contributor.author | Temesgen, H. | es_ES |
dc.contributor.author | Ruiz Fernández, Luis Ángel | es_ES |
dc.date.accessioned | 2018-06-16T04:24:54Z | |
dc.date.available | 2018-06-16T04:24:54Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0045-5067 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/104215 | |
dc.description.abstract | [EN] Accounting for spatial correlation of LiDAR model errors can improve the precision of model-based estimators. To estimate spatial correlation, sample designs that provide close observations are needed, but their implementation might be prohibitively expensive. To quantify the gains obtained by accounting for the spatial correlation of model errors, we examined (i) the spatial correlation patterns of residuals from LiDAR linear models developed to predict volume, total and stem biomass per hectare, quadratic mean diameter (QMD), basal area, mean and dominant height, and stand density and (ii) the impact of field plot size on the spatial correlation patterns in a standwise managed Mediterranean forest in central Spain. For all variables, the correlation range of model residuals consistently increased with plot radius and was always below 60 m except for stand density, where it reached 85 m. Except for QMD, correlation ranges of model residuals were between 1.06 and 8.16 times shorter than those observed for the raw variables. Based on the relatively short correlation ranges observed when the LiDAR metrics were used as predictors, the assumption of independent errors in many forest management inventories seems to be reasonable and appropriate in practice. | es_ES |
dc.description.sponsorship | The authors wish to thank Jay Ver Hoef and Isabel Molina for their valuable comments on earlier versions of the manuscript. The U.S. Bureau of Land Management, the Spanish Ministry of Industry, Tourism and Trade, and the Spanish Ministry of Science and Innovation provided financial support in the framework of the projects "Use of LIDAR and other remote sensing data with FIA plots for mapping forest inventory in Southwest Oregon," InForest II TSI-020100-2009-815, and CGL2010-19591/BTE, respectively. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Canadian Science Publishing | es_ES |
dc.relation.ispartof | Canadian Journal of Forest Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Spatial correlation | es_ES |
dc.subject | LiDAR | es_ES |
dc.subject | Forest inventory | es_ES |
dc.subject | Linear models | es_ES |
dc.subject | Spatial models | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | Analysis of spatial correlation in predictive models of forest variables that use LiDAR auxiliary information | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1139/cjfr-2016-0296 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2010-19591/ES/DESARROLLO DE METODOLOGIAS INTEGRADAS PARA LA ACTUALIZACION DE BASES DE DATOS DE OCUPACION DEL SUELO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MITURCO//TSI-020100-2009-0815/ES/DESARROLLO DE TÉCNICAS Y MÉTODOS PARA LA GESTIÓN FORESTAL SOSTENIBLE A PARTIR DE DATOS DE OBSERVACIÓN DE LA TIERRA (II)/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2016-80705-R/ES/ANALISIS Y VALIDACION DE PARAMETROS DE ESTRUCTURA FORESTAL DERIVADOS DE LIDAR Y OTRAS TECNICAS EMERGENTES Y SU INCIDENCIA EN LA MODELIZACION DEL POTENCIAL COMBUSTIBLE/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Mauro, F.; Monleón, VJ.; Temesgen, H.; Ruiz Fernández, LÁ. (2017). Analysis of spatial correlation in predictive models of forest variables that use LiDAR auxiliary information. Canadian Journal of Forest Research. 47(6):788-799. https://doi.org/10.1139/cjfr-2016-0296 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1139/cjfr-2016-0296 | es_ES |
dc.description.upvformatpinicio | 788 | es_ES |
dc.description.upvformatpfin | 799 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 47 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\342093 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Industria, Turismo y Comercio | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |