- -

North Atlantic Oscillation as a Cause of the Hydrological Changes in the Mediterranean (Jucar River, Spain)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

North Atlantic Oscillation as a Cause of the Hydrological Changes in the Mediterranean (Jucar River, Spain)

Mostrar el registro completo del ítem

Gómez Martínez, G.; Pérez-Martín, MÁ.; Estrela Monreal, T.; Amo-Merino, PD. (2018). North Atlantic Oscillation as a Cause of the Hydrological Changes in the Mediterranean (Jucar River, Spain). Water Resources Management. 32(8):2717-2734. doi:10.1007/s11269-018-1954-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/104739

Ficheros en el ítem

Metadatos del ítem

Título: North Atlantic Oscillation as a Cause of the Hydrological Changes in the Mediterranean (Jucar River, Spain)
Autor: Gómez Martínez, Gabriel Pérez-Martín, Miguel Ángel Estrela Monreal, Teodoro Amo-Merino, Patricia del
Entidad UPV: Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Fecha de fin de embargo: 2019-06-01
Resumen:
[EN] Significant changes in the Jucar River Basin District's hydrology in the Mediterranean side of Spain, have been observed during last decades. A statistical change-point in the year 1980 was detected in the basins' ...[+]
Palabras clave: Hydrological regime changes , Water balance model , Mediterranean Climate Patterns , Change Point Detection
Derechos de uso: Reserva de todos los derechos
Fuente:
Water Resources Management. (issn: 0920-4741 )
DOI: 10.1007/s11269-018-1954-0
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s11269-018-1954-0
Agradecimientos:
The authors would like to thank the Jucar RBD (Spanish Ministry of Environment) and the Confederacion Hidrografica del Jucar (Jucar River Basin Authority - RBA) for their cooperation in the compilation of this paper. The ...[+]
Tipo: Artículo

References

Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675

Bayazit M (2015) Nonstationarity of Hydrological Records and Recent Trends in Trend Analysis: A State-of-the-art Review. Environ Process 2:527–542. https://doi.org/10.1007/s40710-015-0081-7

Bindoff NL, Stott PA, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and attribution of climate change: From global to regional. In: Mokhov II, Stocker TF, Qin D, et al. (eds), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge; New York, pp. 867–952 [+]
Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675

Bayazit M (2015) Nonstationarity of Hydrological Records and Recent Trends in Trend Analysis: A State-of-the-art Review. Environ Process 2:527–542. https://doi.org/10.1007/s40710-015-0081-7

Bindoff NL, Stott PA, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and attribution of climate change: From global to regional. In: Mokhov II, Stocker TF, Qin D, et al. (eds), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge; New York, pp. 867–952

CEDEX (2009) Mapa de caudales máximos. Centro de Estudios y Experimentaciones CEDEX. Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid

Chiew FHS, McMahon TA (1993) Detection of trend or change in annual flow of Australian rivers. Int J Climatol 13:643–653. https://doi.org/10.1002/joc.3370130605

CLC1990 Corine Land Cover (1990) Directorate-General for Environment. European Environment Agency (EEA)

CLC2000 Corine Land Cover (2000) Directorate-General for Environment. European Environment Agency (EEA). Published 1 January 2002

Chirivella V, Capilla JE, Pérez MA (2015) Modelling Regional Impacts of Climate Change on Water Resources: the Júcar Basin, Spain. Hydrol Sci J. https://doi.org/10.1080/02626667.2013.866711

CHJ 2005 Provisional Art. 5 Report Pursuant to the Water Framework Directive. Júcar River Basin Authority (Confederación Hidrográfica del Júcar), Ministry of Environment, Spain

CHJ (2015) Júcar RB Management Plan 2015_2021. Júcar RBA (Demarcación hidrográfica del Júcar). Confederación Hidrográfica del Júcar. Ministry of Environment, Madrid

Du T, Xiong L, Xu C-Y, Gippel CJ, Guo S, Liu P (2015) Return period and risk analysis of nonstationary low-flow series under climate change. J Hydrol 527:234–250. https://doi.org/10.1016/j.jhydrol.2015.04.041

EEA (European Environment Agency), 2003. Indicator Factsheet WQ01c. Available online, URL: http://www.eea.europa.eu/data-and-maps/indicators/water-exploitation-index

El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobee B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43:W03410. https://doi.org/10.1029/2005WR004545

Estrela T, Pérez-Martín MA, Vargas E (2012) Impacts of Climate Change on Water Resources in Spain. Hydrol Sci J 57(6):1154–1167 https://doi.org/10.1080/02626667.2012.702213

Ferrer J, Pérez-Martín MA, Jiménez S, Estrela T, Andreu J (2012) GIS based models for water quantity and quality assessment in the Júcar River Basin, Spain, including climate change effects. Sci Total Environ 440:42–59. https://doi.org/10.1016/j.scitotenv.2012.08.032

García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta-Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth-Sci Rev 105(2011):121–139

Hegerl G, Zwiers F (2011) Use of models in detection and attribution of climate change. Wiley Interdiscip Rev Clim Chang 2(4):570–591. https://doi.org/10.1002/wcc.121)

HURRELL (2016) North Atlantic Oscillation (NAO) INDEX (STATION-BASED) https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based

Hurrell JW, Deser C (2009) North Atlantic climate variability: The role of the North Atlantic Oscillation. J Mar Syst 78(1):28–41

Kendall MG (1975) Rank Correlation Measures. Charles Griffin, London

Livingston EH (2004) Who Was Student and Why Do We Care So Much about His t-Test? J Surg Res 118:58–65. https://doi.org/10.1016/j.jss.2004.02.003

López-Bustins JA, Martín-Vide J, Sánchez-Lorenzo A (2008) Iberia winter rainfall trends based upon changes in teleconnection and circulation patterns. Glob Planet Chang 63(2008):171–176

Lorenzo-Lacruz J, Vicente-Serrano SM, López-Moreno JI, Morán-Tejeda E, Zabalza J (2012) Recent trends in Iberian streamflows (1945–2005). J Hydrol 414–415(2012):463–475

Martín-Vide J, Lopez Bustins JA (2006) The Western Mediterranean Oscillation and Rainfall in the Iberian Peninsula. Int J Climatol 26(11):1455–1475

Merz B, Vorogushyn S, Uhlemann S, Delgado J, Hundecha Y (2012) HESS Opinions More efforts and scientific rigour are needed to attribute trends in flood time series. Hydrol Earth Syst Sci 16(5):1379–1387. https://doi.org/10.5194/hess-16-1379-2012

Miao W, Chiou P (2008) Confidence intervals for the difference between two means. Comput Stat Data Anal 52(2008):2238–2248. https://doi.org/10.1016/j.csda.2007.07.017

Milly PC, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP (2008) Stationary is dead: Whither water management? J Sci 318:573–574

Morán-Tejeda E, López-Moreno JI, Ceballos-Barbancho A, Vicente-Serrano SM (2011) River regimes and recent hydrological changes in the Duero basin (Spain). J Hydrol 404(2011):241–258

Morán-Tejeda E, Ceballos-Barbancho A, Llorente-Pinto JM, López-Moreno JI (2012) Land-cover changes and recent hydrological evolution in the Duero Basin (Spain). Reg Environ Chang 12:17–33. https://doi.org/10.1007/s10113-011-0236-7

Moraes JM, Pellegrino HQ, Ballester MV, Martinelli LA, Victoria R, Krusche AV (1998) Trends in hydrological parameters of southern Brazilian watershed and its relation to human induced changes. Water Resour Manag 12:295–311. https://doi.org/10.1023/A:1008048212420

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans Am Soc Agric Biol Eng 50(3):885–900. https://doi.org/10.13031/2013.23153

Nash JE, Sutcliffe, JV (1970) River flow forecasting through conceptual models part I — A discussion of principles. 10(3):282-290. https://doi.org/10.1016/0022-1694(70)90255-6

National Academies of Sciences, Engineering, and Medicine (2016) Attribution of Extreme Weather Events in the Context of Climate Change. National Academies Press, Washington, D.C. https://doi.org/10.17226/21852

Pajares-Candela A. 2002. Modelación cuasidistribuida de los recursos hídricos y establecimiento de zonas hidroclimáticamente afines en el ámbito de la Confederación Hidrográfica del Júcar. Escuela de Caminos Canales y Puertos, Universidad Politécnica de Valencia

Pérez-Martín MA, Estrela T, Andreu J, Ferrer J (2014) Modeling Water Resources and River-Aquifer Interaction in the Júcar River Basin, Spain. Water Resour Manag 28:4337–4358. https://doi.org/10.1007/s11269-014-0755-3

Perreault L, Hache M, Slivitsky M, Bobee B (1999) Detection of changes in precipitation and runoff over eastern Canada and US using a Bayesian approach. Stoch Env Res Risk A 13:201–216. https://doi.org/10.1007/s004770050039

Pettit AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126–135

Pinto JG, Raible CC (2012) Past and recent changes in the North Atlantic oscillation. WIREs Clim Change 2012(3):79–90. https://doi.org/10.1002/wcc.150

Rasmussen P (2001) Bayesian estimation of change points using the general linear model. Water Resour Res 37:2723–2731. https://doi.org/10.1029/2001WR000311

Reeves J, Chen J, Wang XL, Lund R, Lu Q (2007) A Review and Comparison of Changepoint Detection Techniques for Climate Data. J Appl Meteorol Climatol. https://doi.org/10.1175/JAM2493.1

Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biom Bull 2:110–114

Senatore A et al 2011 Regional climate change projections and hydrological impact analysis for a Mediterranean basin in Southern Italy. Alfonso Senatore, Giuseppe Mendicino, Gerhard Smiatekb, Harald Kunstmann. a Dipartimento di Difesa del Suolo, Università della Calabria, P.te P. Bucci 41b, 87036 Rende (CS), Italy. b Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany. J Hydrol 399 (1–2):70–92

Huang S, Liu D Huang Q, Chen Y (2016) Contributions of climate variability and human activities to the variation of runoff in the Wei River Basin, China. ISSN: 0262–6667 (Print) 2150–3435 (Online) Journal

Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614

Stott PA, Christidis N, Otto FEL, Sun Y, Vanderlinden J-P, van Oldenborgh GJ, Vautard R, von Storch H, Walton P, Yiou P, Zwiers FW (2016) Attribution of extreme weather and climate-related events. Wiley Interdiscip Rev Clim Chang 7(1):23–41. https://doi.org/10.1002/wcc.380

Strupczewski WG, Kaczmarek Z (2001) Non-stationary approach to at-site flood frequency modeling II. Weighted least squares estimation. J Hydrol 248:143–151. https://doi.org/10.1016/S0022-1694(01)00398-5

Strupczewski WG, Singh VP, Feluch W (2001a) Non-stationary approach to at-site flood frequency modeling I. Maximum likelihood estimation. J Hydrol 248:123–142. https://doi.org/10.1016/S0022-1694(01)00397-3

Strupczewski WG, Singh VP, Mitosek HT (2001b) Nonstationary approach to at-site flood frequency modeling III. Flood analysis of Polish rivers. J Hydrol 248:152–167. https://doi.org/10.1016/S0022-1694(01)00399-7

Sridhar V, Nayak A (2010) Implications of climate-driven variability and trends for the hydrologic assessment of the Reynolds Creek Experimental Watershed, Idaho. J Hydrol 385(2010):183–202

Tao H, Gemmer M, Bai Y, Su B, Mao W (2011) Trends of streamflow in the Tarim River Basin during the past 50 years: Human impact or climate change? J Hydrol 400(2011):1–9

Trenberth KE, Fasullo JT, Shepherd TG (2015) Attribution of climate extreme events. Nat Clim Chang 5(8):725–730. https://doi.org/10.1038/nclimate2657

Valero Villarroya M 2007 Evaluación de los efectos del cambio en los usos del suelo mediante el uso de un modelo de simulación del ciclo hidrológico aplicado en la cuenca del Júcar. Ejercicio final de carrera. Escuela de Caminos Canales y Puertos, Universidad Politécnica de Valencia

Villarini G, Serinaldi F, Smith JA, Krajewski WF (2009) On the stationarity of annual flood peaks in the Continental United States during the 20th Century. Water Resour Res 45:W08417. https://doi.org/10.1029/2008WR007645

Villarini G, Smith JA, Napolitano F (2010) Nonstationary modeling of a long record of rainfall and temperature over Rome. Adv Water Resour 33:1256–1267. https://doi.org/10.1016/j.advwatres.2010.03.013

Welch BL (1938) The significance of the difference between two means when the population variances are unequal. Biometrika 29:350–362

Wong H, Hu BQ, Ip WC, Xia J (2006) Change-point analysis of hydrological time series using grey relational method. J Hydrol 324:323–338. https://doi.org/10.1016/j.jhydrol.2005.10.007

Xie H, Li D, Xiong L (2014) Exploring the ability of the Pettit method for detecting change point by Monte Carlo simulation. Stoch Env Res Risk A 28(7):1643–1655. https://doi.org/10.1007/s00477-013-0814-y

Xiong L, Jiang C, Xu C-Y, Yu K-x, Guo S (2015) A framework of change-point detection for multivariate hydrological series Water Resour Res 51. doi: https://doi.org/10.1002/2015WR017677

Yue S, Pilon P, Cavadias G (2002) Power of the Mann–Kendall and Sperman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259:254–271. https://doi.org/10.1016/S0022-1694(01)00594-7

Zhang Q, Singh VP, Sun P, Chen X, Zhang Z, Li J (2011) Precipitation and streamflow changes in China: Changing patterns, causes and implications. J Hydrol 410(2011):204–216

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem