Mostrar el registro sencillo del ítem
dc.contributor.author | Benítez Sánchez, Ignacio Javier | es_ES |
dc.contributor.author | Quijano Lopez, Alfredo | es_ES |
dc.contributor.author | Delgado Espinos, Ignacio | es_ES |
dc.contributor.author | Diez Ruano, José Luís | es_ES |
dc.date.accessioned | 2018-07-01T04:21:50Z | |
dc.date.available | 2018-07-01T04:21:50Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/104883 | |
dc.description.abstract | [EN] The deployment of Advanced Metering Infrastructure (AMI) is providing to utilities large amounts of energy consumption data from their customers, in form of daily load profiles with energy consumed per hour or a smaller period. These data can yield valuable results when analyzed, in order to extract useful knowledge about the typical patterns of consumption of energy from the customers. The proper mechanisms and tools have to be developed and implemented for this objective. Big Data and Big Data Analytics systems will contribute to analyze this information and help to extract knowledge from the data, summarized in form of patterns or other mining knowledge, that will aid experts in decision support. In the present work a classification of customers based on their temporal load profiles is proposed. This classification procedure could be implemented in the current Big Data Analytics software systems, providing an added value to their statistical analysis options. Previous works in the literature present algorithms that allow to classify load profiles from customers by processing batch datasets and obtaining static patterns of load profiles. The proposed technique allows to analyze patterns not only in shape but also in their evolution or trend of energy consumption at each hour of the day through time. Specific quantitative indicators that characterize the patterns (and the consumers associated to them) are described and tested for this purpose. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | CIGRE Conseil international des grands réseaux électriques | es_ES |
dc.relation.ispartof | Cigre Science & engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Load profiles | es_ES |
dc.subject | Dynamic clustering | es_ES |
dc.subject | Pattern recognition | es_ES |
dc.subject | Classification | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Classification of customers based on temporal load profile patterns | es_ES |
dc.type | Artículo | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología Eléctrica - Institut de Tecnologia Elèctrica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Benítez Sánchez, IJ.; Quijano Lopez, A.; Delgado Espinos, I.; Diez Ruano, JL. (2017). Classification of customers based on temporal load profile patterns. Cigre Science & engineering. (7):143-148. http://hdl.handle.net/10251/104883 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.cigre.org/Menu-links/Publications | es_ES |
dc.description.upvformatpinicio | 143 | es_ES |
dc.description.upvformatpfin | 148 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.eissn | 2426-1335 | es_ES |
dc.relation.pasarela | S\326745 | es_ES |