- -

Subjective and objective assessment of fish sperm motility: when the technique and technicians matter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Subjective and objective assessment of fish sperm motility: when the technique and technicians matter

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gallego Albiach, Victor es_ES
dc.contributor.author Herranz-Jusdado, Juan Germán es_ES
dc.contributor.author Rozenfeld, Christoffer es_ES
dc.contributor.author Pérez Igualada, Luz María es_ES
dc.contributor.author Asturiano Nemesio, Juan Francisco es_ES
dc.date.accessioned 2018-07-02T04:22:03Z
dc.date.available 2018-07-02T04:22:03Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0920-1742 es_ES
dc.identifier.uri http://hdl.handle.net/10251/104902
dc.description.abstract [EN] Fish sperm motility is nowadays considered the best sperm quality biomarker in fish, and can be evaluated both by subjective and computerized methods. With the aim to compare the precision and accuracy of both techniques, fish sperm samples were assessed by subjective methods and by a computerassisted sperm analysis (CASA-Mot) system, and simultaneously by three different technicians with different degrees of expertise on the sperm quality analysis. Statistical dispersion parameters (CV, coefficient of variation; and RG, range) were estimated in order to determine the precision and accuracy of the techniques and the influence of laboratory staff on sperm motion assessments. Concerning precision, there were not much significant differences between the technical support staff (high, medium, and low experimented technician), and statistical dispersion parameters were quite similar between them independent of the technique used and the sperm motility class analyzed. However, concerning accuracy, experimented technician reported subjective motility values very closed to the values provided by the CASA-Mot system, only 10 percentage points away from the data provided by a CASA-Mot system. However, medium and low experimented technicians often overestimate the CASA-Mot values, and amplitudes up to 30 percentage points were detected in several sperm assessments. To sum up, both the technique (subjective or objective) and the technician (degree of expertise) became key factors in order to reach accurate motility estimations, so the use of both qualified staff and novel CASA-Mot systems seems to be a critical requirement for obtaining satisfying results in fish species with similar motility patterns.
dc.description.sponsorship This study is funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 642893 (IMPRESS) and the COST Office (COST Action FA1205: AQUAGAMETE). VG has a postdoc grant from the UPV (PAID-10-16).
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Fish Physiology and Biochemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Subjective and objective assessment of fish sperm motility: when the technique and technicians matter es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10695-018-0505-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/642893/EU/Improved production strategies for endangered freshwater species./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-16/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//FA1205/EU/Assessing and improving the quality of aquatic animal gametes to enhance aquatic resources - The need to harmonize and standardize evolving methodologies, and improve transfer from academia to industry/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-04-30 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología Animal - Institut de Ciència i Tecnologia Animal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Gallego Albiach, V.; Herranz-Jusdado, JG.; Rozenfeld, C.; Pérez Igualada, LM.; Asturiano Nemesio, JF. (2018). Subjective and objective assessment of fish sperm motility: when the technique and technicians matter. Fish Physiology and Biochemistry. 1-11. https://doi.org/10.1007/s10695-018-0505-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10695-018-0505-1 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\364185 es_ES
dc.contributor.funder European Commission
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Universitat Politècnica de València
dc.description.references Boryshpolets S, Kowalski RK, Dietrich GJ, Dzyuba B, Ciereszko A (2013) Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters. Theriogenology 80:758–765. https://doi.org/10.1016/j.theriogenology.2013.06.019 es_ES
dc.description.references Bozkurt Y, Secer S (2006) Relationship between spermatozoa motility, egg size, fecundity and fertilization success in brown trout (Salmo trutta fario). Pakistan J Biol Sci 9:2141–2144. https://doi.org/10.3923/pjbs.2006.2141.2144 es_ES
dc.description.references Cabrita E, Martínez-Páramo S, Gavaia PJ, Riesco MF, Valcarce DG, Sarasquete C, Herráez MP, Robles V (2014) Factors enhancing fish sperm quality and emerging tools for sperm analysis. Aquaculture 432:389–401. https://doi.org/10.1016/j.aquaculture.2014.04.034 es_ES
dc.description.references Castellini C, Dal Bosco A, Ruggeri S, Collodel G (2011) What is the best frame rate for evaluation of sperm motility in different species by computer-assisted sperm analysis? Fertil Steril 96(1):24–27 es_ES
dc.description.references Fauvel C, Suquet M, Cosson J (2010) Evaluation of fish sperm quality. J Appl Ichthyol 26:636–643. https://doi.org/10.1111/j.1439-0426.2010.01529.x es_ES
dc.description.references Gage MJG, Macfarlane CP, Yeates S, Ward RG, Searle JB, Parker GA (2004) Spermatozoal traits and sperm competition in Atlantic salmon: relative sperm velocity is the primary determinant of fertilization success. Curr Biol 14:44–47. https://doi.org/10.1016/S0960-9822(03)00939-4 es_ES
dc.description.references Gallego V, Asturiano JF (2018) Sperm motility in fish: technical applications and perspectives through computer-aided sperm analysis (CASA) systems. Reprod Fertil Dev ( http://www.publish.csiro.au/RD/justaccepted/RD17460 ) es_ES
dc.description.references Gallego V, Carneiro PCF, Mazzeo I, Vílchez MC, Peñaranda DS, Soler C, Pérez L, Asturiano JF (2013a) Standardization of European eel (Anguilla anguilla) sperm motility evaluation by CASA software. Theriogenology 79:1034–1040. https://doi.org/10.1016/j.theriogenology.2013.01.019 es_ES
dc.description.references Gallego V, Cavalcante SS, Fujimoto RY, Carneiro PCF, Azevedo HC, Maria AN (2017) Fish sperm subpopulations: changes after cryopreservation process and relationship with fertilization success in tambaqui (Colossoma macropomum). Theriogenology 87:16–24. https://doi.org/10.1016/j.theriogenology.2016.08.001 es_ES
dc.description.references Gallego V, Pérez L, Asturiano JF, Yoshida M (2013b) Relationship between spermatozoa motility parameters, sperm/egg ratio, and fertilization and hatching rates in pufferfish (Takifugu niphobles). Aquaculture 416–417:238–243. https://doi.org/10.1016/j.aquaculture.2013.08.035 es_ES
dc.description.references Gasparini C, Simmons LW, Beveridge M, Evans JP (2010) Sperm swimming velocity predicts competitive fertilization success in the green swordtail Xiphophorus helleri. PLoS One 5:e12146. https://doi.org/10.1371/journal.pone.0012146 es_ES
dc.description.references Hala DN, VanLook K, Holt WV, Jobling S (2009) Validation of a method for measuring sperm quality and quantity in reproductive toxicity tests with pair-breeding male fathead minnows (Pimephales promelas). ILAR J 50:e1–e10 es_ES
dc.description.references Kime DE, VanLook KJW, McAllister BG et al (2001) Computer-assisted sperm analysis (CASA) as a tool for monitoring sperm quality in fish. Comp Biochem Physiol - C Toxicol Pharmacol 130:425–433. https://doi.org/10.1016/S1532-0456(01)00270-8 es_ES
dc.description.references Komatireddy R r, Madishetti R (2017) Coefficient of variation assessment for seminal traits evaluated by computer assisted semen analysis (CASA). Int J Sci Environ Technol 5:3452–3456 es_ES
dc.description.references Liu QH, Li J, Xiao ZZ, Ding FH, Yu DD, Xu XZ (2007) Use of computer-assisted sperm analysis (CASA) to evaluate the quality of cryopreserved sperm in red seabream (Pagrus major). Aquaculture 263:20–25. https://doi.org/10.1016/j.aquaculture.2006.11.017 es_ES
dc.description.references McAuliffe RE (2015) Coefficient of variation. In: Wiley encyclopedia of management. John Wiley & Sons, Ltd, Chichester, pp 1–1 es_ES
dc.description.references Peñaranda DS, Pérez L, Gallego V, Barrera R, Jover M, Asturiano JF (2010) European eel sperm diluent for short-term storage. Reprod Domest Anim 45:407–415. https://doi.org/10.1111/j.1439-0531.2008.01206.x es_ES
dc.description.references Pepper-Yowell AR (2011) The use of computer assisted semen analysis to predict fertility in Holstein bulls. Colorado State University. Doctoral Thesis es_ES
dc.description.references Pérez L, Asturiano JF, Tomás A et al (2000) Induction of maturation and spermiation in the male European eel: assessment of sperm quality throughout treatment. J Fish Biol 57:1488–1504. https://doi.org/10.1006/jfbi.2000.1411 es_ES
dc.description.references Reicks DL, Center SV, St Peter MN (2012) Capturing value of CASA-Mot systems es_ES
dc.description.references Rosenthal H, Asturiano JF, Linhart O, Horváth Á (2010) On the biology of fish gametes: summary and recommendations of the Second International Workshop, Valencia, Spain, 2009. J Appl Ichthyol 26:621–622. https://doi.org/10.1111/j.1439-0426.2010.01550.x es_ES
dc.description.references Rudolfsen G, Figenschou L, Folstad I, Kleven O (2008) Sperm velocity influence paternity in the Atlantic cod (Gadus morhua L.). Aquac Res 39:212–216. https://doi.org/10.1111/j.1365-2109.2007.01863.x es_ES
dc.description.references Rurangwa E, Kime DE, Ollevier F, Nash JP (2004) The measurement of sperm motility and factors affecting sperm quality in cultured fish. Aquaculture 234:1–28. https://doi.org/10.1016/j.aquaculture.2003.12.006 es_ES
dc.description.references Verstegen J, Iguer-Ouada M, Onclin K (2002) Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 57:149–179. https://doi.org/10.1016/S0093-691X(01)00664-1 es_ES
dc.description.references Walker JS, Winet H, Freund M (1982) A comparison of subjective and objective sperm motility evaluation. J Androl 3:184–192. https://doi.org/10.1002/j.1939-4640.1982.tb00667.x es_ES
dc.description.references World Health Organization (2010). WHO laboratory manual for the examination and processing of human semen (5th edition). Printed in Switzerland (286 pp.) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem