- -

Estimation of cerchar abrasivity index of andesitic rocks in Ecuador from chemical compounds and petrographical properties using regression analyses

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Estimation of cerchar abrasivity index of andesitic rocks in Ecuador from chemical compounds and petrographical properties using regression analyses

Show simple item record

Files in this item

dc.contributor.author Torrijo, F.J. es_ES
dc.contributor.author Garzón-Roca, Julio es_ES
dc.contributor.author Company Rodríguez, Julio es_ES
dc.contributor.author Cobos Campos, Guillermo es_ES
dc.date.accessioned 2018-07-06T04:25:07Z
dc.date.available 2018-07-06T04:25:07Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1435-9529 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105343
dc.description.abstract [EN] An important issue in any rock engineering project is the adequate prediction of tool consumption. Excavation tools are subjected to wear, and repair/replacement of those tools is usually an important expense on any excavation budget. The key factor that affects wear of excavation tools is rock abrasivity. In mining and civil engineering, rock abrasivity is typically measured by the Cerchar abrasivity index (CAI), which is obtained in laboratory from a Cerchar abrasivity test. This paper studied the relation between CAI and the chemical compounds and petrographical properties of andesitic rocks from the central area of Ecuador. A series of regression analyses are performed to study the influence of the different chemical compounds and petrographical properties on the CAI value. Results show that it is possible to make a good estimation of CAI from the plagioclase grain size and/or the content of SiO2, FeO, MgO, CaO, Na2O and K2O compounds. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Bulletin of Engineering Geology and the Environment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cerchar abrasivity index es_ES
dc.subject Andesitic rock es_ES
dc.subject Chemical compounds es_ES
dc.subject Petrographical properties es_ES
dc.subject.classification INGENIERIA DEL TERRENO es_ES
dc.title Estimation of cerchar abrasivity index of andesitic rocks in Ecuador from chemical compounds and petrographical properties using regression analyses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10064-018-1306-6 es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-05-22 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería del Terreno - Departament d'Enginyeria del Terreny es_ES
dc.description.bibliographicCitation Torrijo, F.; Garzón-Roca, J.; Company Rodríguez, J.; Cobos Campos, G. (2018). Estimation of cerchar abrasivity index of andesitic rocks in Ecuador from chemical compounds and petrographical properties using regression analyses. Bulletin of Engineering Geology and the Environment. 1-14. doi:10.1007/s10064-018-1306-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10064-018-1306-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\362569 es_ES
dc.relation.references Al-Ameen SL, Waller MD (1994) The influence of rock strength and abrasive mineral content on the CERCHAR abrasive index. Eng Geol 36:293–301 es_ES
dc.relation.references Alber M (2007) Stress dependency of the Cerchar Abrasivity index (CAI) and its effects on wear of selected rock cutting tools. Tunn Undergr Space Technol 9:351–539 es_ES
dc.relation.references Alber M (2008) Stress dependency of the Cerchar abrasivity index (CAI) and its effects on wear of selected rock cutting tools. Tunn Undergr Space Technol 23:351–359 es_ES
dc.relation.references Alber M, Yaralı O, Dahl F, Bruland A, Käsling H, Michalakopoulos TN, Cardu M, Hagan P, Aydın H, Özarslan A (2014) ISRM suggested method for determining the abrasivity of rock by the CERCHAR abrasivity test. Rock Mech Rock Eng 47:261–266 es_ES
dc.relation.references ASTM D3967 (2001) Standard test method for splitting tensile strength of intact rock core specimens. American Society for Testing and Materials, West Conshohocken es_ES
dc.relation.references ASTM D7012 (2010) Standard test method for compressive strength and elastic module of intact rock core specimens under varying states of stress and temperatures. American Society for Testing and Materials, West Conshohocken es_ES
dc.relation.references ASTM D7625 (2010) Standard test method for laboratory determination of abrasiveness of rock using the CERCHAR method. American Society for Testing and Materials, West Conshohocken es_ES
dc.relation.references Atkinson T, Cassapi VB, Singh RN (1986a) Assessment of abrasive wear resistance potential in rock excavation machinery. Int J Min Geol Eng 3:151–163 es_ES
dc.relation.references Atkinson T, Denby B, Cassapi VB (1986b) Problems associated with rock material properties in surface mining equipment selection. Trans Inst Min Metall Section A Miner Ind 95:A80–A86 es_ES
dc.relation.references Boland MP, Pilatasig LF, Ibandango CE, McCourt WJ, Aspden JA, Hughes RA, Beate B (2000) Geology of the western cordillera between 0°-1°N, mining development and environmental control project, map and geological information program, report no. 10, (Proyecto de Desarrollo Minero y control Ambiental, Programa de Informacion cartografica y Geológica, Informe no. 10), CODIGEM-BGS, Quito, Ecuador, p 72 (In Spanish) es_ES
dc.relation.references CERCHAR (1986) The CERCHAR abrasiveness index. Centre d’Etudes et des Recherches des Charbonages de France, Verneuil, France es_ES
dc.relation.references Deliormanlı A (2011) Cerchar abrasivitiy index (CAI) and its relation to strength and abrasion test methods for marble stones. Constr Build Mat 30:16–21 es_ES
dc.relation.references Deliormanlı AH (2012) Cerchar abrasivity index (CAI) and its relation to strength and abrasion test methods for marble stones. Constr Build Mater 30:16–21 es_ES
dc.relation.references Er S, Tugrul A (2016a) Correlation of physico-mechanical properties of granitic rocks with Cerchar Abrasivity index in Turkey. Measurement 91:114–123 es_ES
dc.relation.references Er S, Tugrul A (2016b) Estimation of Cerchar abrasivity index of granitic rocks in Turkey by geological properties using regression analysis. B Eng Geol Environ 75(3):1325–1339 es_ES
dc.relation.references Fowell RJ, Abu Bakar MZ (2007) A review of the Cerchar and LCPC rock abrasivity measurement methods. Proceeding of the 11th congress of the International Society for Rock Mechanics 155–160 es_ES
dc.relation.references Hamzaban MT, Memarian H, Rostami J (2014a) Continuous monitoring of pin tip wear and penetration into rock surface using a new Cerchar abrasivity testing device. Rock Mech Rock Eng 47(2):689–701 es_ES
dc.relation.references Hamzaban MT, Memarian H, Rostami J, Ghasemi-Monfared H (2014b) Study of rock-pin interaction in Cerchar abrasivity test. Int J Rock Mech Min Sci 72:100–108 es_ES
dc.relation.references ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. International Society for Rock Mechanics, Lisbon es_ES
dc.relation.references Kahraman S, Alber M, Fener M, Gunaydin O (2010) The usability of Cerchar abrasivity index for the prediction of UCS and E of Misis fault breccia: regression and artificial neural networks analysis. Expert Syst Appl 37:8750–8756 es_ES
dc.relation.references Käsling H, Thuro K (2010) Determining abrasivity of rock in the laboratory. European Rock Mechanics Symposium. EUROCK 2010, Laussane, Switzerland es_ES
dc.relation.references Lassnig K, Latal C, Klima K (2008) Impact of grain size on the Cerchar abrasiveness test. Ernst and Sohn Verlag für Architektur und technische Wissenschaften GmbH and Co. KG. Berlin Geomechanik und Tunnelbau 1, Heft 1 es_ES
dc.relation.references Majeed Y, Abu Bakar MZ (2016) Statistical evaluation of CERCHAR Abrasivity index (CAI) measurement methods and dependence on petrographic and mechanical properties of selected rocks of Pakistan. Bull Eng Geol Environ 75:1341–1360 es_ES
dc.relation.references Michalakopoulos TN, Anagnostou VG, Bassanou ME, Panagiotou GN (2005) The influence of steel styli hardness on the Cerchar abrasiveness index value. Inter J Rock Mech Mining Sci Geomechan Abstracts 43:321–327 es_ES
dc.relation.references Moradizadeh M, Ghafoori M, Lashkaripour GR, Tarigh Azali S (2013) Utilizing geological properties for predicting cerchar abrasiveness index (CAI) in sandstones. Int J Emerg Technol Advan Eng 3(9):99–109 es_ES
dc.relation.references NF P 94–430-1 (2000) Determination du pouvoir abrasif d’une roche— Partie 1: Essai de rayure avec une pointe. Association française de Normalisation (AFNOR), Paris es_ES
dc.relation.references Plinninger R, Kasling H, Thuro K, Spaun G (2003) Testing conditions and geomechanical properties in influencing the CERCHAR abrasiveness index (CAI) value. J Rock Mech Mining Sci 40:159–263 es_ES
dc.relation.references Rostami J, Ghasemi A, Gharahbagh AE, Dogruoz C, Dahl F (2014) Study of dominant factors affecting cerchar abrasivity index. Mech Rock Eng 47:1905–1919 es_ES
dc.relation.references StatPoint Technologies, Inc (2009) STATGRAPHICS centurion XVI user manual. StatPoint Technologies Inc, The Plains es_ES
dc.relation.references Suana M, Peters T (1982) The CERCHAR abrasivity index and its relation to rock mineralogy and petrography. Rock Mech Rock Eng 15:1–7 es_ES
dc.relation.references Thuro K (1997) Prediction of drillability in hard rock tunneling by drilling and blasting. In: Golser, Hinkel and Schubert (Eds.) Tunnels for people, Balkema, Rotterdam, pp 103–108 es_ES
dc.relation.references Vallejo C (2007) Evolution of the western cordillera in the Andes of Ecuador (late cretaceous–Paleogene). Dissertation, Institute of Geology, ETH Zürich es_ES
dc.relation.references Vallejo C, Winkler W, Spikings RA, Luzieux L, Heller F, Bussy F (2009) Mode and timing of terrane accretion in the forearc of the Andes in Ecuador. In: Kay SM, Ramos VA, Dickinson WR (Eds.) Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision. Geol Soc Am Mem 204:197–216 es_ES
dc.relation.references Vera RH (2016) Geology of Ecuador. Iberia, Quito es_ES
dc.relation.references Vezzoli L, Apuani T, Corazzato C, Uttini A (2017) Geological and geotechnical characterization of the debris avalanche and pyroclastic deposits of Cotopaxi volcano (Ecuador). A contribute to instability-related hazard studies. J Volcanol Geotherm Res 332:51–70 es_ES
dc.relation.references West G (1989) Rock abrasiveness testing for tunneling. Int J Rock Mech Min Sci Geomech Abstr 26:151–160 es_ES
dc.relation.references Yarali O, Yasar E, Bacak G, Ranjith PG (2008) A study of rock abrasivity and tool wear in coal measures rocks. Int J Coal Geol 74:53–66 es_ES


This item appears in the following Collection(s)

Show simple item record