Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. AMS 11(1), 85–141 (1984)
Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)
Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. 2013 (2013). Article ID 780153
[+]
Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. AMS 11(1), 85–141 (1984)
Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)
Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. 2013 (2013). Article ID 780153
Devaney, R.L.: The mandelbrot set, the farey tree and the fibonacci sequence. Amer. Math. Monthly 106(4), 289–302 (1999)
Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974)
Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010)
Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009)
Neta, B., Scott, M., Chun, C.: Basins attractors for various methods for multiple roots. Appl. Math. Comput. 218, 5043–5066 (2012)
Petkovic, M.S., Neta, B., Petkovic, L.D., Dzunic, J.: Multipoint methods for solving nonlinear equations. Academic Press (2013)
Sharma, J.R., Sharma, R.: Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010)
Schröder, E.: Über unendlichviele Algorithm zur Auffosung der Gleichungen. Math. Annal. 2, 317–365 (1870)
Scott, M., Neta, B., Chun, C.: Basins attractors for various methods. Appl. Math. Comput. 218, 2584–2599 (2011)
Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)
Traub, J.F.: Iterative Methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964)
Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)
Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. J. Comput. Math. Appl. 235, 4199–4206 (2011)
[-]