- -

An optimal fourth-order family of methods for multiple roots and its dynamics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An optimal fourth-order family of methods for multiple roots and its dynamics

Mostrar el registro completo del ítem

Behl, R.; Cordero Barbero, A.; Motsa, SS.; Torregrosa Sánchez, JR.; Kanwar, V. (2016). An optimal fourth-order family of methods for multiple roots and its dynamics. Numerical Algorithms. 71(4):775-796. https://doi.org/10.1007/s11075-015-0023-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105366

Ficheros en el ítem

Metadatos del ítem

Título: An optimal fourth-order family of methods for multiple roots and its dynamics
Autor: Behl, Ramandeep Cordero Barbero, Alicia Motsa, Sandile S. Torregrosa Sánchez, Juan Ramón Kanwar, Vinay
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] There are few optimal fourth-order methods for solving nonlinear equations when the multiplicity m of the required root is known in advance. Therefore, the principle focus of this paper is on developing a new fourth-order ...[+]
Palabras clave: Nonlinear equations , Multiple roots , Chebyshev's method , Schroder method , Basin of attraction , Complex dynamics
Derechos de uso: Cerrado
Fuente:
Numerical Algorithms. (issn: 1017-1398 )
DOI: 10.1007/s11075-015-0023-5
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s11075-015-0023-5
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./
Agradecimientos:
This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-02.
Tipo: Artículo

References

Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. AMS 11(1), 85–141 (1984)

Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)

Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. 2013 (2013). Article ID 780153 [+]
Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. AMS 11(1), 85–141 (1984)

Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)

Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. 2013 (2013). Article ID 780153

Devaney, R.L.: The mandelbrot set, the farey tree and the fibonacci sequence. Amer. Math. Monthly 106(4), 289–302 (1999)

Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974)

Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010)

Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009)

Neta, B., Scott, M., Chun, C.: Basins attractors for various methods for multiple roots. Appl. Math. Comput. 218, 5043–5066 (2012)

Petkovic, M.S., Neta, B., Petkovic, L.D., Dzunic, J.: Multipoint methods for solving nonlinear equations. Academic Press (2013)

Sharma, J.R., Sharma, R.: Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010)

Schröder, E.: Über unendlichviele Algorithm zur Auffosung der Gleichungen. Math. Annal. 2, 317–365 (1870)

Scott, M., Neta, B., Chun, C.: Basins attractors for various methods. Appl. Math. Comput. 218, 2584–2599 (2011)

Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)

Traub, J.F.: Iterative Methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964)

Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)

Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. J. Comput. Math. Appl. 235, 4199–4206 (2011)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem