dc.contributor.author |
Cordero Barbero, Alicia
|
es_ES |
dc.contributor.author |
Kansal, Munish
|
es_ES |
dc.contributor.author |
Kanwar, Vinay
|
es_ES |
dc.contributor.author |
Torregrosa Sánchez, Juan Ramón
|
es_ES |
dc.date.accessioned |
2018-07-06T07:14:16Z |
|
dc.date.available |
2018-07-06T07:14:16Z |
|
dc.date.issued |
2016 |
es_ES |
dc.identifier.issn |
1017-1398 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/105391 |
|
dc.description.abstract |
[EN] In this paper, we present a uniparametric family of modified Chebyshev-Halley type methods with optimal eighth-order of convergence. In terms of computational cost, each member of the family requires only four functional evaluations per step, and hence is optimal in the sense of Kung-Traub conjecture. Moreover, in order to have additional information to choose some elements of the class, in particular some stable enough, we use complex dynamics tools to analyze their stability. Then, some ranges of values of the parameter are found to be avoided but we show that the region of stable members of this family is vast. It is found by way of illustration that these proposed methods are very useful in high precision computations. |
es_ES |
dc.description.sponsorship |
This research was partially supported by Ministerio de Economía y Competitividad MTM2014-52016-C2-2-P. |
|
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer-Verlag |
es_ES |
dc.relation.ispartof |
Numerical Algorithms |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Nonlinear equations |
es_ES |
dc.subject |
Optimal iterative schemes |
es_ES |
dc.subject |
Newton method |
es_ES |
dc.subject |
Chebyshev-Halley scheme |
es_ES |
dc.subject |
Efficiency index |
es_ES |
dc.subject |
Complex dynamics |
es_ES |
dc.subject |
Stability functions |
es_ES |
dc.subject |
Dynamical planes |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
A stable class of improved second-derivative free Chebyshev-Halley type methods with optimal eighth order convergence |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1007/s11075-015-0075-6 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ |
es_ES |
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.description.bibliographicCitation |
Cordero Barbero, A.; Kansal, M.; Kanwar, V.; Torregrosa Sánchez, JR. (2016). A stable class of improved second-derivative free Chebyshev-Halley type methods with optimal eighth order convergence. Numerical Algorithms. 72(4):937-958. https://doi.org/10.1007/s11075-015-0075-6 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://doi.org/10.1007/s11075-015-0075-6 |
es_ES |
dc.description.upvformatpinicio |
937 |
es_ES |
dc.description.upvformatpfin |
958 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
72 |
es_ES |
dc.description.issue |
4 |
es_ES |
dc.relation.pasarela |
S\316656 |
es_ES |
dc.contributor.funder |
Ministerio de Economía, Industria y Competitividad |
es_ES |
dc.description.references |
Petković, M.S., Neta, B., Petković, L.D., Dz̆unić, J. (eds.): Multipoint Methods for Solving Nonlinear Equations. Elsevier, New York (2013) |
es_ES |
dc.description.references |
Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, New Jersey (1964) |
es_ES |
dc.description.references |
Ostrowski, A.M.: Solutions of Equations and System of Equations. Academic Press, New York (1966) |
es_ES |
dc.description.references |
Gutiérrez, J.M., Hernández, M.A.: A family of Chebyshev-Halley type methods in Banach spaces. Bull. Austral. Math. Soc. 55, 113–130 (1997) |
es_ES |
dc.description.references |
Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. ACM 21, 643–651 (1974) |
es_ES |
dc.description.references |
King, R.F.: A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973) |
es_ES |
dc.description.references |
Jarratt, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966) |
es_ES |
dc.description.references |
Li, D., Liu, P., Kou, J.: An improvement of Chebyshev-Halley methods free from second derivative. Appl. Math. Comput. 235, 221–225 (2014) |
es_ES |
dc.description.references |
Cordero, A., Lotfi, T., Mahdiani, K., Torregrosa, J.R.: A stable family with high order of convergence for solving nonlinear equations. Appl. Math. Comput. 254, 240–251 (2015) |
es_ES |
dc.description.references |
Varona, J.L.: Graphic and numerical comparison between iterative methods. Math. Intelligencer 24, 37–46 (2002) |
es_ES |
dc.description.references |
Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A: Math. Sci. 10, 3–35 (2004) |
es_ES |
dc.description.references |
Amat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Lett. 25, 2209–2217 (2012) |
es_ES |
dc.description.references |
Cordero, A., García-Maimó, C., Torregrosa, J.R., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013) |
es_ES |
dc.description.references |
Cordero, A., Torregrosa, J.R., Vindel, P.: Dynamics of a family of Chebyshev-Halley type method. Appl. Math. Comput. 219, 8568–8583 (2013) |
es_ES |
dc.description.references |
Gutiérrez, J.M., Hernández, M.A., Romero, N.: Dynamics of a new family of iterative processes for quadratic polynomials. Comput. Appl. Math. 233, 2688–2695 (2010) |
es_ES |
dc.description.references |
Neta, B., Chun, C., Scott, M.: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equation. App. Math. Comput. 227, 567–592 (2014) |
es_ES |
dc.description.references |
Scott, M., Neta, B., Chun, C.: Basin attractors for various methods. Appl. Math. Comput. 218, 2584–2599 (2011) |
es_ES |
dc.description.references |
Blanchard, P.: Complex Analytic Dynamics on the Riemann Sphere. Bull. of the AMS 11(1), 85–141 (1984) |
es_ES |
dc.description.references |
Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994) |
es_ES |
dc.description.references |
Babajee, D.K.R., Cordero, A., Torregrosa, J.R.: Study of iterative methods through the Cayley Quadratic Test. Comput. Appl. Math. 291, 358–369 (2016) |
es_ES |
dc.description.references |
Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods. The Sci. World J. (2013). Article ID 780153 |
es_ES |
dc.description.references |
Chun, C., Lee, M.Y.: A new optimal eighth-order family of iterative methods for the solution of nonlinear equations. Appl. Math. Comput. 223, 506–519 (2013) |
es_ES |
dc.description.references |
Liu, L., Wang, X.: Eighth-order methods with high efficiency index for solving nonlinear equations. Appl. Math. Comput. 215, 3449–3454 (2010) |
es_ES |
dc.description.references |
Thukral, R., Petković, M.S.: A family of three-point methods of optimal order for solving nonlinear equations. J. Comput. Appl. Math. 233, 2278–2284 (2010) |
es_ES |
dc.description.references |
Jay, I.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001) |
es_ES |