Nåvik, P., Rønnquist, A., & Stichel, S. (2015). The use of dynamic response to evaluate and improve the optimization of existing soft railway catenary systems for higher speeds. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(4), 1388-1396. doi:10.1177/0954409715605140
Harèll, P., Drugge, L., & Reijm, M. (2005). Study of Critical Sections in Catenary Systems During Multiple Pantograph Operation. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 219(4), 203-211. doi:10.1243/095440905x8934
Bruni, S., Ambrosio, J., Carnicero, A., Cho, Y. H., Finner, L., Ikeda, M., … Zhang, W. (2014). The results of the pantograph–catenary interaction benchmark. Vehicle System Dynamics, 53(3), 412-435. doi:10.1080/00423114.2014.953183
[+]
Nåvik, P., Rønnquist, A., & Stichel, S. (2015). The use of dynamic response to evaluate and improve the optimization of existing soft railway catenary systems for higher speeds. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(4), 1388-1396. doi:10.1177/0954409715605140
Harèll, P., Drugge, L., & Reijm, M. (2005). Study of Critical Sections in Catenary Systems During Multiple Pantograph Operation. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 219(4), 203-211. doi:10.1243/095440905x8934
Bruni, S., Ambrosio, J., Carnicero, A., Cho, Y. H., Finner, L., Ikeda, M., … Zhang, W. (2014). The results of the pantograph–catenary interaction benchmark. Vehicle System Dynamics, 53(3), 412-435. doi:10.1080/00423114.2014.953183
Shabana, A. A. (1998). Nonlinear Dynamics, 16(3), 293-306. doi:10.1023/a:1008072517368
Zhou, N., & Zhang, W. (2011). Investigation on dynamic performance and parameter optimization design of pantograph and catenary system. Finite Elements in Analysis and Design, 47(3), 288-295. doi:10.1016/j.finel.2010.10.008
Kim, J.-W., & Yu, S.-N. (2013). Design variable optimization for pantograph system of high-speed train using robust design technique. International Journal of Precision Engineering and Manufacturing, 14(2), 267-273. doi:10.1007/s12541-013-0037-7
Ambrósio, J., Pombo, J., & Pereira, M. (2013). Optimization of high-speed railway pantographs for improving pantograph-catenary contact. Theoretical and Applied Mechanics Letters, 3(1), 013006. doi:10.1063/2.1301306
Lee, J.-H., Kim, Y.-G., Paik, J.-S., & Park, T.-W. (2012). Performance evaluation and design optimization using differential evolutionary algorithm of the pantograph for the high-speed train. Journal of Mechanical Science and Technology, 26(10), 3253-3260. doi:10.1007/s12206-012-0833-5
Massat, J.-P., Laurent, C., Bianchi, J.-P., & Balmès, E. (2014). Pantograph catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools. Vehicle System Dynamics, 52(sup1), 338-354. doi:10.1080/00423114.2014.898780
Cho, Y. H., Lee, K., Park, Y., Kang, B., & Kim, K. (2010). Influence of contact wire pre-sag on the dynamics of pantograph–railway catenary. International Journal of Mechanical Sciences, 52(11), 1471-1490. doi:10.1016/j.ijmecsci.2010.04.002
Zhang, W., Mei, G., & Zeng, J. (2002). A Study of Pantograph/Catenary System Dynamics with Influence of Presag and Irregularity of Contact Wire. Vehicle System Dynamics, 37(sup1), 593-604. doi:10.1080/00423114.2002.11666265
Koziel, S., & Yang, X.-S. (Eds.). (2011). Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence. doi:10.1007/978-3-642-20859-1
Hare, W., Nutini, J., & Tesfamariam, S. (2013). A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 59, 19-28. doi:10.1016/j.advengsoft.2013.03.001
Tur, M., Baeza, L., Fuenmayor, F. J., & García, E. (2014). PACDIN statement of methods. Vehicle System Dynamics, 53(3), 402-411. doi:10.1080/00423114.2014.963126
Tur, M., García, E., Baeza, L., & Fuenmayor, F. J. (2014). A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary. Engineering Structures, 71, 234-243. doi:10.1016/j.engstruct.2014.04.015
Gregori, S., Tur, M., Nadal, E., Aguado, J. V., Fuenmayor, F. J., & Chinesta, F. (2017). Fast simulation of the pantograph–catenary dynamic interaction. Finite Elements in Analysis and Design, 129, 1-13. doi:10.1016/j.finel.2017.01.007
Gerstmayr, J., & Shabana, A. A. (2006). Analysis of Thin Beams and Cables Using the Absolute Nodal Co-ordinate Formulation. Nonlinear Dynamics, 45(1-2), 109-130. doi:10.1007/s11071-006-1856-1
Collina, A., & Bruni, S. (2002). Numerical Simulation of Pantograph-Overhead Equipment Interaction. Vehicle System Dynamics, 38(4), 261-291. doi:10.1076/vesd.38.4.261.8286
Ambrósio, J., Pombo, J., Antunes, P., & Pereira, M. (2014). PantoCat statement of method. Vehicle System Dynamics, 53(3), 314-328. doi:10.1080/00423114.2014.969283
Nåvik, P., Rønnquist, A., & Stichel, S. (2017). Variation in predicting pantograph–catenary interaction contact forces, numerical simulations and field measurements. Vehicle System Dynamics, 55(9), 1265-1282. doi:10.1080/00423114.2017.1308523
[-]