- -

Extending the deterministic Riemann-Liouville and Caputo operators to the random framework: A mean square approach with applications to solve random fractional differential equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extending the deterministic Riemann-Liouville and Caputo operators to the random framework: A mean square approach with applications to solve random fractional differential equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Burgos, C. es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Villafuerte, L. es_ES
dc.contributor.author Villanueva Micó, Rafael Jacinto es_ES
dc.date.accessioned 2018-07-08T04:26:21Z
dc.date.available 2018-07-08T04:26:21Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0960-0779 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105486
dc.description.abstract [EN] This paper extends both the deterministic fractional Riemann¿Liouville integral and the Caputo fractional derivative to the random framework using the mean square random calculus. Characterizations and sufficient conditions to guarantee the existence of both fractional random operators are given. Assuming mild conditions on the random input parameters (initial condition, forcing term and diffusion coefficient), the solution of the general random fractional linear differential equation, whose fractional order of the derivative is ¿ ¿ [0, 1], is constructed. The approach is based on a mean square chain rule, recently established, together with the random Fröbenius method. Closed formulae to construct reliable approximations for the mean and the covariance of the solution stochastic process are also given. Several examples illustrating the theoretical results are included. es_ES
dc.description.sponsorship This work has been partially supported by the Ministerio de Economia y Competitividad grant MTM2013-41765-P. The co-author Prof. L. Villafuerte acknowledges the support by Mexican Conacyt. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chaos, Solitons and Fractals es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Random mean square Riemann-Liouville integral es_ES
dc.subject Random mean square Caputo derivative es_ES
dc.subject Random fractional linear differential equation es_ES
dc.subject Random Frobenius method es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Extending the deterministic Riemann-Liouville and Caputo operators to the random framework: A mean square approach with applications to solve random fractional differential equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chaos.2017.02.008 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-09-30 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Burgos, C.; Cortés, J.; Villafuerte, L.; Villanueva Micó, RJ. (2017). Extending the deterministic Riemann-Liouville and Caputo operators to the random framework: A mean square approach with applications to solve random fractional differential equations. Chaos, Solitons and Fractals. 102:305-318. https://doi.org/10.1016/j.chaos.2017.02.008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.chaos.2017.02.008 es_ES
dc.description.upvformatpinicio 305 es_ES
dc.description.upvformatpfin 318 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 102 es_ES
dc.relation.pasarela S\338368 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem