- -

Predicting mobile apps spread: An epidemiological random network modeling approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Predicting mobile apps spread: An epidemiological random network modeling approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alegre-Sanahuja, Juan es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Villanueva Micó, Rafael Jacinto es_ES
dc.contributor.author Santonja, Francisco-Jose es_ES
dc.date.accessioned 2018-07-08T04:27:16Z
dc.date.available 2018-07-08T04:27:16Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0740-6797 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105489
dc.description.abstract [EN] The mobile applications business is a really big market, growing constantly. In app marketing, a key issue is to predict future app installations. The influence of the peers seems to be very relevant when downloading apps. Therefore, the study of the evolution of mobile apps spread may be approached using a proper network model that considers the influence of peers. Influence of peers and other social contagions have been successfully described using models of epidemiological type. Hence, in this paper we propose an epidemiological random network model with realistic parameters to predict the evolution of downloads of apps. With this model, we are able to predict the behavior of an app in the market in the short term looking at its evolution in the early days of its launch. The numerical results provided by the proposed network are compared with data from real apps. This comparison shows that predictions improve as the model is fed back. Marketing researchers and strategy business managers can benefit from the proposed model since it can be helpful to predict app behavior over the time anticipating the spread of an app es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Transactions of the Society for Computer Simulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Epidemiological random network es_ES
dc.subject Mobile app spread es_ES
dc.subject Prediction es_ES
dc.subject Behavior over time es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Predicting mobile apps spread: An epidemiological random network modeling approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0037549717712600 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-02-28 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Alegre-Sanahuja, J.; Cortés, J.; Villanueva Micó, RJ.; Santonja, F. (2017). Predicting mobile apps spread: An epidemiological random network modeling approach. Transactions of the Society for Computer Simulation. 94(2):123-130. https://doi.org/10.1177/0037549717712600 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/0037549717712600 es_ES
dc.description.upvformatpinicio 123 es_ES
dc.description.upvformatpfin 130 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 94 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\338374 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem