Mostrar el registro sencillo del ítem
dc.contributor.author | Cerdán Soriano, Juana Mercedes | es_ES |
dc.contributor.author | Marín Mateos-Aparicio, José | es_ES |
dc.contributor.author | Mas Marí, José | es_ES |
dc.date.accessioned | 2018-07-09T04:25:55Z | |
dc.date.available | 2018-07-09T04:25:55Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/105506 | |
dc.description.abstract | [EN] Computational electromagnetics based on the solution of the integral form of Maxwell s equations with boundary element methods require the solution of large and dense linear systems. For large-scale problems the solution is obtained by using iterative Krylov-type methods provided that a fast method for performing matrix vector products is available. In addition, for ill-conditioned problems some kind of preconditioning technique must be applied to the linear system in order to accelerate the convergence of the iterative method and improve its performance. For many applications it has been reported that incomplete factorizations often suffer from numerical instability due to the indefiniteness of the coefficient matrix. In this context, approximate inverse preconditioners based on Frobenius-norm minimization have emerged as a robust and highly parallel alternative. In this work we propose a two-level ILU preconditioner for the preconditioned GMRES method. The computation and application of the preconditioner is based on graph partitioning techniques. Numerical experiments are presented for different problems and show that with this technique it is possible to obtain robust ILU preconditioners that perform competitively compared with Frobenius-norm minimization preconditioners. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministerio de Economía y Competitividad under grant MTM2014-58159-P and MTM2015-68805-REDT. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Computational electromagnetism | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Preconditioning | es_ES |
dc.subject | Incomplete LU factorizations | es_ES |
dc.subject | Graph partitioning | es_ES |
dc.subject | Matrix reorderings | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A two-level ILU preconditioner for electromagnetic applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cam.2016.03.012 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-58159-P/ES/PRECONDICIONADORES PARA SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE MINIMOS CUADRADOS, CALCULO DE VALORES PROPIOS Y APLICACIONES TECNOLOGICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-68805-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2019-01-01 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cerdán Soriano, JM.; Marín Mateos-Aparicio, J.; Mas Marí, J. (2017). A two-level ILU preconditioner for electromagnetic applications. Journal of Computational and Applied Mathematics. 309:371-382. https://doi.org/10.1016/j.cam.2016.03.012 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.cam.2016.03.012 | es_ES |
dc.description.upvformatpinicio | 371 | es_ES |
dc.description.upvformatpfin | 382 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 309 | es_ES |
dc.relation.pasarela | S\325852 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |