- -

Continuous flow photoassisted CO2 methanation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Continuous flow photoassisted CO2 methanation

Mostrar el registro completo del ítem

Albero-Sancho, J.; Domínguez Torres, E.; Corma Canós, A.; García Gómez, H. (2017). Continuous flow photoassisted CO2 methanation. Sustainable Energy & Fuels. 1(6):1303-1307. doi:10.1039/c7se00246g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105510

Ficheros en el ítem

Metadatos del ítem

Título: Continuous flow photoassisted CO2 methanation
Autor: Albero-Sancho, Josep Domínguez Torres, Esther Corma Canós, Avelino García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Fecha de fin de embargo: 2018-08-01
Resumen:
[EN] Photoassisted CO2 methanation using Ni-Al2O3/SiO2 as a photoresponsive catalyst has been carried out at 225 degrees C under continuous flow conditions achieving up to 3.5% conversion of CO2 with complete selectivity ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Sustainable Energy & Fuels. (eissn: 2398-4902 )
DOI: 10.1039/c7se00246g
Editorial:
Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c7se00246g
Código del Proyecto:
Ministerio de Economía y Competitividad/CTQ2015-65169-CO2-R1
Agradecimientos:
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-65169-CO2-R1) is gratefully acknowledged. J. A. thanks the Universitat Politecnica de Valencia for the post-doctoral research ...[+]
Tipo: Artículo

References

Nozik, A. J., & Miller, J. (2010). Introduction to Solar Photon Conversion. Chemical Reviews, 110(11), 6443-6445. doi:10.1021/cr1003419

Arakawa, H., Aresta, M., Armor, J. N., Barteau, M. A., Beckman, E. J., Bell, A. T., … Tumas, W. (2001). Catalysis Research of Relevance to Carbon Management:  Progress, Challenges, and Opportunities. Chemical Reviews, 101(4), 953-996. doi:10.1021/cr000018s

Li, K., An, X., Park, K. H., Khraisheh, M., & Tang, J. (2014). A critical review of CO2 photoconversion: Catalysts and reactors. Catalysis Today, 224, 3-12. doi:10.1016/j.cattod.2013.12.006 [+]
Nozik, A. J., & Miller, J. (2010). Introduction to Solar Photon Conversion. Chemical Reviews, 110(11), 6443-6445. doi:10.1021/cr1003419

Arakawa, H., Aresta, M., Armor, J. N., Barteau, M. A., Beckman, E. J., Bell, A. T., … Tumas, W. (2001). Catalysis Research of Relevance to Carbon Management:  Progress, Challenges, and Opportunities. Chemical Reviews, 101(4), 953-996. doi:10.1021/cr000018s

Li, K., An, X., Park, K. H., Khraisheh, M., & Tang, J. (2014). A critical review of CO2 photoconversion: Catalysts and reactors. Catalysis Today, 224, 3-12. doi:10.1016/j.cattod.2013.12.006

Rönsch, S., Schneider, J., Matthischke, S., Schlüter, M., Götz, M., Lefebvre, J., … Bajohr, S. (2016). Review on methanation – From fundamentals to current projects. Fuel, 166, 276-296. doi:10.1016/j.fuel.2015.10.111

Hoekman, S. K., Broch, A., Robbins, C., & Purcell, R. (2010). CO2 recycling by reaction with renewably-generated hydrogen. International Journal of Greenhouse Gas Control, 4(1), 44-50. doi:10.1016/j.ijggc.2009.09.012

Pan, P.-W., & Chen, Y.-W. (2007). Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catalysis Communications, 8(10), 1546-1549. doi:10.1016/j.catcom.2007.01.006

Sastre, F., Puga, A. V., Liu, L., Corma, A., & García, H. (2014). Complete Photocatalytic Reduction of CO2 to Methane by H2 under Solar Light Irradiation. Journal of the American Chemical Society, 136(19), 6798-6801. doi:10.1021/ja500924t

Neațu, Ștefan, Maciá-Agulló, J., & Garcia, H. (2014). Solar Light Photocatalytic CO2 Reduction: General Considerations and Selected Bench-Mark Photocatalysts. International Journal of Molecular Sciences, 15(4), 5246-5262. doi:10.3390/ijms15045246

Zhao, Y., Chen, G., Bian, T., Zhou, C., Waterhouse, G. I. N., Wu, L.-Z., … Zhang, T. (2015). Defect-Rich Ultrathin ZnAl-Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2to CO with Water. Advanced Materials, 27(47), 7824-7831. doi:10.1002/adma.201503730

Varghese, O. K., Paulose, M., LaTempa, T. J., & Grimes, C. A. (2009). High-Rate Solar Photocatalytic Conversion of CO2and Water Vapor to Hydrocarbon Fuels. Nano Letters, 9(2), 731-737. doi:10.1021/nl803258p

Meng, X., Wang, T., Liu, L., Ouyang, S., Li, P., Hu, H., … Ye, J. (2014). Photothermal Conversion of CO2into CH4with H2over Group VIII Nanocatalysts: An Alternative Approach for Solar Fuel Production. Angewandte Chemie, 126(43), 11662-11666. doi:10.1002/ange.201404953

Jia, J., O’Brien, P. G., He, L., Qiao, Q., Fei, T., Reyes, L. M., … Ozin, G. A. (2016). Visible and Near-Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO2over Nanostructured Pd@Nb2O5. Advanced Science, 3(10), 1600189. doi:10.1002/advs.201600189

Ren, J., Ouyang, S., Xu, H., Meng, X., Wang, T., Wang, D., & Ye, J. (2016). Targeting Activation of CO2and H2over Ru-Loaded Ultrathin Layered Double Hydroxides to Achieve Efficient Photothermal CO2Methanation in Flow-Type System. Advanced Energy Materials, 7(5), 1601657. doi:10.1002/aenm.201601657

Kocemba, I., Nadajczyk, J., Góralski, J., & Szynkowska, M. (2010). Photoreduction of carbon dioxide with hydrogen using temperature programmed method. Polish Journal of Chemical Technology, 12(3), 1-2. doi:10.2478/v10026-010-0022-1

Gilmore, K., & Seeberger, P. H. (2014). Continuous Flow Photochemistry. The Chemical Record, 14(3), 410-418. doi:10.1002/tcr.201402035

Sicardi, S., Baldi, G., van Dierendonck, L., & Smeets, T. (1988). Comparison between batch and continuous tubular reactors used for the study of reaction kinetics in heterogeneous systems. Chemical Engineering Science, 43(8), 1843-1848. doi:10.1016/0009-2509(88)87051-9

Albero, J., Garcia, H., & Corma, A. (2016). Temperature Dependence of Solar Light Assisted CO2 Reduction on Ni Based Photocatalyst. Topics in Catalysis, 59(8-9), 787-791. doi:10.1007/s11244-016-0550-x

Yung, T.-Y., Huang, L.-Y., Chan, T.-Y., Wang, K.-S., Liu, T.-Y., Chen, P.-T., … Liu, L.-K. (2014). Synthesis and characterizations of Ni-NiO nanoparticles on PDDA-modified graphene for oxygen reduction reaction. Nanoscale Research Letters, 9(1), 444. doi:10.1186/1556-276x-9-444

Kasztelan, S., Grimblot, J., Bonnelle, J. P., Payen, E., Toulhoat, H., & Jacquin, Y. (1983). Preparation of Co-Mo-γAl2O3 and Ni-Mo-γAl2O3 catalysts by ph regulation of molybdenum solution. characterization of supported species and hydrogenation activities. Applied Catalysis, 7(1), 91-112. doi:10.1016/0166-9834(83)80241-3

Venezia, A. M., Bertoncello, R., & Deganello, G. (1995). X-ray photoelectron spectroscopy investigation of pumice-supported nickel catalysts. Surface and Interface Analysis, 23(4), 239-247. doi:10.1002/sia.740230408

Feng, Y., Yang, W., & Chu, W. (2015). A Study of CO2Methanation over Ni-Based Catalysts Supported by CNTs with Various Textural Characteristics. International Journal of Chemical Engineering, 2015, 1-7. doi:10.1155/2015/795386

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem