- -

A front-fixing numerical method for a free boundary nonlinear diffusion logistic population model

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A front-fixing numerical method for a free boundary nonlinear diffusion logistic population model

Show full item record

Piqueras-García, MÁ.; Company Rossi, R.; Jódar Sánchez, LA. (2017). A front-fixing numerical method for a free boundary nonlinear diffusion logistic population model. Journal of Computational and Applied Mathematics. 309:473-481. doi:10.1016/j.cam.2016.02.029

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105531

Files in this item

Item Metadata

Title: A front-fixing numerical method for a free boundary nonlinear diffusion logistic population model
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] The spatial temporal spreading of a new invasive species in a habitat has interest in ecology and is modeled by a moving boundary diffusion logistic partial differential problem, where the moving boundary represents ...[+]
Subjects: Diffusive logistic population model , Moving boundary , Stefan condition , Finite difference , Numerical analysis , Computing simulation
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Journal of Computational and Applied Mathematics. (issn: 0377-0427 )
DOI: 10.1016/j.cam.2016.02.029
Publisher:
Elsevier
Publisher version: http://doi.org/10.1016/j.cam.2016.02.029
Conference name: Mathematical Modelling in Engineering & Human Behaviour 2015. 17th Edition of the Mathematical Modelling Conference Series at the Institute for Multidisciplinary Mathematics
Conference place: Valencia, Spain
Conference date: September 09-11,2015
Project ID: info:eu-repo/grantAgreement/EC/FP7/304617/EU
Thanks:
This work has been partially supported by the European Union in the FP7-PEOPLE-2012-ITN program under Grant Agreement Number 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance) ...[+]
Type: Artículo Comunicación en congreso

This item appears in the following Collection(s)

Show full item record