- -

Identification of Distinct Copper Species in Cu-CHA Samples Using NO as Probe Molecule. A Combined IR Spectroscopic and DFT Study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of Distinct Copper Species in Cu-CHA Samples Using NO as Probe Molecule. A Combined IR Spectroscopic and DFT Study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Millan, Reisel es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2018-07-09T06:45:37Z
dc.date.available 2018-07-09T06:45:37Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1022-5528 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105543
dc.description.abstract [EN] Combining IR spectroscopy of NO adsorption on copper exchanged molecular sieves with the chabazite structure, i.e. Cu-SAPO-34 and Cu-SSZ-13, and theoretical calculations, different types of copper species have been identified. On one hand, [Cu¿OH]+ species can be accurately distinguished, characterized by a ¿NO frequency at 1788¿ 1798 cm¿1 depending on their location in the chabazite structure (6R vs. 8R) and composition (Cu-SAPO-34 vs. Cu-SSZ-13). On the other hand, dimeric copper oxo [Cu¿O¿ Cu]2+ species have been properly identified by means of DFT modelling, that proposes a ¿NO stretching frequency of 1887 cm¿1, which has been confirmed experimentally in the Cu-SAPO-34 sample. Finally the location of isolated Cu2+ ions either in the 6R units or in the 8R positions of the chabazite cavity could be accurately defined according to DFT data, and validated in the experimental IR spectra with IR bands between 1907 and 1950 cm¿1. Regarding to Cu+ species, IR spectroscopy of CO reveals different types of Cu+ species as evidenced by their ability to form mono, di and try carbonyls. The unambiguous differentiation of different types of copper species is of great interest in further identification of active sites for the NH3- SCR reaction. es_ES
dc.description.sponsorship This work has been supported by the Spanish Government through "Severo Ochoa Program" (SEV 2012-0267), and MAT2015-71261-R, the European Union through ERC-AdG-2014-671093 (SynCatMatch); and the Generalitat Valenciana through the Prometeo program (PROMETEOII/2013/011). R.M. acknowledges "La Caixa - Severo Ochoa" International PhD Fellowships (call 2015). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Topics in Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cu-CHA es_ES
dc.subject IR spectroscopy es_ES
dc.subject NO es_ES
dc.subject DFT modelling es_ES
dc.subject SAPO-34 es_ES
dc.subject SSZ-13 es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Identification of Distinct Copper Species in Cu-CHA Samples Using NO as Probe Molecule. A Combined IR Spectroscopic and DFT Study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11244-017-0844-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F011/ES/Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas (PROMETEO)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71261-R/ES/DISEÑO RACIONAL DE MATERIALES ZEOLITICOS CON CENTROS METALICOS PARA SU APLICACION EN PROCESOS QUIMICOS SOSTENIBLES, MEDIOAMBIENTALES Y ENERGIAS RENOVABLES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-12-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Concepción Heydorn, P.; Boronat Zaragoza, M.; Millan, R.; Moliner Marin, M.; Corma Canós, A. (2017). Identification of Distinct Copper Species in Cu-CHA Samples Using NO as Probe Molecule. A Combined IR Spectroscopic and DFT Study. Topics in Catalysis. 60(19-20):1653-1663. https://doi.org/10.1007/s11244-017-0844-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11244-017-0844-7 es_ES
dc.description.upvformatpinicio 1653 es_ES
dc.description.upvformatpfin 1663 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 60 es_ES
dc.description.issue 19-20 es_ES
dc.relation.pasarela S\356194 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Commission
dc.description.references Wilken N, Wijayanti K, Kamasamudram K, Currier NW, Vedaiyan R, Yezerets A, Olsson L (2012) Appl Catal B 111:58–66 es_ES
dc.description.references Kwak JH, Tran D, Burton SD, Szanyi J, Lee JH, Peden CHF (2012) J Catal 287:203–209 es_ES
dc.description.references Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) J Catal 275:187–190 es_ES
dc.description.references Bull I, Boorse RS, Jaglowski WM, Koermer GS, Moini A, Patchett JA, Xue WM, Burk P, Dettling JC, Caudle MT (2008) U.S. Patent 0,226,545 es_ES
dc.description.references Martínez-Franco R, Moliner M, Franch C, Kustov A, Corma A (2012) Appl Catal B 127:273–280 es_ES
dc.description.references Borfecchia E, Lomachenko KA, Giordanino F, Falsig H, Beato P, Soldatov AV, Bordiga S, Lamberti C (2015) Chem Sci 6:548–563 es_ES
dc.description.references Beale AM, Gao F, Lezcano-Gonzalez I, Peden CHF, Szanyi J (2015) Chem Soc Rev 44:7371–7405 es_ES
dc.description.references Beale AM, Gao F, Lezcano-Gonzalez I, Slawinksi WA, Wragg DS (2016) Chem Commun 52:6170–6173 es_ES
dc.description.references Kwak JH, Varga T, Peden CHF, Gao F, Hanson JC, Szanyi J (2014) J Catal 314:83–89 es_ES
dc.description.references Korhonen ST, Fickel DW, Lobo RF, Weckhuysen BM, Beale AM (2011) Chem Commun 47:800–802 es_ES
dc.description.references Kwak JH, Zhu H, Lee JH, Peden CHF, Szanyi J (2012) Chem Commun 48:4758–4760 es_ES
dc.description.references Paolucci C, Parekh AA, Khurana I, Iorio JRD, Li H, Caballero JDA, Shih AJ, Anggara T, Delgass WN, Miller JT, Ribeiro FH, Gounder R, Schneider WF (2016) J Am Chem Soc 138:6028–6048 es_ES
dc.description.references Fickel DW, Fedeyko JM, Lobo RF (2010) J Phys Chem C 114:1633–1640 es_ES
dc.description.references Gao F, Walter ED, Karp EM, Luo J, Tonkyn RG, Kwak JH, Szanyi J, Peden CHF (2013) J Catal 300:20–29 es_ES
dc.description.references Andersen CW, Bremholm M, Vennestrom PNR, Blichfeld AB, Lundegaard LF, Iversen BB (2014) IUCRJ 1:382–386 es_ES
dc.description.references Godikse A, Stappen FN, Vennestrom PNR, Giordanino F, Rasmussen SB, Lundegaard LF, Mossin S (2014) J Phys Chem C 118:23126–23138 es_ES
dc.description.references Lei GD, Adelman BJ, Sárkány J, Sachtler WMH (1995) Appl Catal B 5:245–256 es_ES
dc.description.references Da Costa P, Moden B, Meitzner GD, Lee DK, Iglesia E (2002) Phys Chem Chem Phys 4:4590–4601 es_ES
dc.description.references Da Costa P, Modén B, Meitzner GD, Lee DK, Iglesia E (2002) Phys Chem Chem Phys 4:4590–4601 es_ES
dc.description.references Bordiga S, Pazé C, Berlier G, Scarano D, Spoto G, Zecchina A, Lamberti C (2001) Catal Today 70:91–105 es_ES
dc.description.references Martínez-Franco R, Moliner M, Concepcion P, Thogersen JR, Corma A (2014) J Catal 314:73–82 es_ES
dc.description.references Martínez-Franco R, Moliner M, Thogersen JR, Corma A (2013) Chem Cat Chem 5:3316–3323 es_ES
dc.description.references Hadjiivanov K, Vayssilov GN (2002) Adv Catal 47:307–511 es_ES
dc.description.references Hadjiivanov K (2000) Catal Rev Sci Eng 42:71–144 es_ES
dc.description.references Zaki MI, Knözinger H (1987) Mater Chem Phys 17:201–215 es_ES
dc.description.references Zaki MI, Knözinger H (1987) Spectrochim Acta 43A:1455–1459 es_ES
dc.description.references Neyman KM, Strodel P, Ruzankin SP, Schlensog N, Knözinger H, Rösch N (1995) Catal Lett 31:273–285 es_ES
dc.description.references Strodel P, Neyman KM, Knözinger H, Rösch N (1995) Chem Phys Lett 240:547–552 es_ES
dc.description.references Spielbauer D, Mekheimer GAH, Zaki MI, Knözinger H (1996) Catal Lett 40:71–79 es_ES
dc.description.references Hadjiivanov K, Busca G (1994) Langmuir 10:4534–4541 es_ES
dc.description.references Hadjiivanov K, Lamotte J, Lavalley JC (1997) Langmuir 13:3374–3382 es_ES
dc.description.references Concepción P, Hadjiivanov K, Knözinger H (1999) J Catal 184(1):172–179 es_ES
dc.description.references Lange FC, Schmelz H, Knözinger H (1996) Appl Catal B 8:245–265 es_ES
dc.description.references Wang D, Zhang L, Kamasamudram K, Epling WS (2013) ACS Catal 3:871–878 es_ES
dc.description.references Combita D, Concepción P, Corma A (2014) J Catal 311:339–349 es_ES
dc.description.references Concepción P, Botella P, López Nieto JM (2004) Appl Catal A 278:45–56 es_ES
dc.description.references Lamberti C, Bordiga S, Salvalaggio M, Spoto G, Zecchina A, Geobaldo F, Vlaic G, Bellatreccia M (1997) J Phys Chem B 101:344–360 es_ES
dc.description.references Lamberti C, Palomino GT, Bordiga S, Berlier G, Acapito FD, Zecchina A (2000) Angew Chem Int Ed 39:2138–2140 es_ES
dc.description.references Palomino GT, Bordiga S, Zecchina A, Marra GL, Lamberti C (2000) J Phys Chem B 104:8641–8651 es_ES
dc.description.references Zecchina A, Bordiga S, Salvalaggio M, Spoto G, Scarano D, Lamberti C (1998) J Catal 173:540–542 es_ES
dc.description.references Zecchina A, Bordiga S, Palomino GT, Scarano D, Lamberti C, Salvalaggio M (1999) J Phys Chem B 103:3833–3844 es_ES
dc.description.references Lamberti C, Bordiga S, Zecchina A, Salvalaggio M, Geobaldo F, Arean CO (1998) J Chem Soc Faraday Trans 94:1519–1525 es_ES
dc.description.references Palomino GT, Giamello E, Fisicaro P, Bordiga S, Lamberti C, Zecchina A (2000) Stud Surf Sci Catal 130:2915–2920 es_ES
dc.description.references Xamena F, Fisicaro P, Berlier G, Zecchina A, Palomino GT, Prestipino C, Bordiga S, Giamello E, Lamberti C (2003) J Phys Chem B 107:7036–7044 es_ES
dc.description.references Prestipino C, Regli L, Vitillo JG, Bonino F, Damin A, Lamberti C, Zecchina A, Solari PL, Kongshaug KO, Bordiga S (2006) Chem Mater 18:1337–1346 es_ES
dc.description.references Lamberti C, Groppo E, Spoto G, Bordiga S, Zecchina A (2007) Adv Catal 51:1–74 es_ES
dc.description.references Lamberti C, Zecchina A, Groppo E, Bordiga S (2010) Chem Soc Rev 39:4951–5001 es_ES
dc.description.references Spoto G, Zecchina A, Bordiga S, Ricchiardi G, Martra G, Leofanti G, Petrini G (1994) Appl Catal B 3:151–172 es_ES
dc.description.references Prestipino C, Berlier G, Xamena F, Spoto G, Bordiga S, Zecchina A, Palomino GT, Yamamoto T, Lamberti C (2002) Chem Phys Lett 363:389–396 es_ES
dc.description.references Leofanti G, Marsella A, Cremaschi B, Garilli M, Zecchina A, Spoto G, Bordiga S, Fisicaro P, Berlier G, Prestipino C, Casali G, Lamberti C (2001) J Catal 202:279–295 es_ES
dc.description.references Boronat M, Concepción P, Corma A (2009) J Phys Chem C 113:16772–16784 es_ES
dc.description.references Boronat M, Concepción P, Corma A, Renz M, Valencia S (2005) J Catal 234:111–118 es_ES
dc.description.references Zhang R, McEwen JS, Kollar M, Gao F, Wang Y, Szanyi J, Peden CHF (2014) ACS Catal4:4093–4105 es_ES
dc.description.references Göltl F, Bulo RE, Hafner J, Sautet P (2013) J Phys Chem Lett 4:2244–2249 es_ES
dc.description.references Palomino GT, Fisicarro P, Bordiga S, Zecchina A, Giamello E, Lamberti C (2000) J Phys Chem B 104:4064–4073 es_ES
dc.description.references Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687 es_ES
dc.description.references Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249 es_ES
dc.description.references Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186 es_ES
dc.description.references Kresse G, Hafner J (1993) Phys Rev B 47:558–561 es_ES
dc.description.references Blöchl PE (1994) Phys Rev B 50:17953–17979 es_ES
dc.description.references Göltl F, Sautet P, Hermans I (2015) Angew Chem Int Ed 54:7799–7804 es_ES
dc.description.references Uzunova EL, Göltl F, Kresse G, Hafner J (2009) J Phys Chem C 113:5247 es_ES
dc.description.references Göltl F, Hafner J (2012) J Chem Phys 136:064503–064531 es_ES
dc.description.references Giordanino F, Vennestrom PNR, Lundegaard LF, Stappen FN, Mossin S, Beato P, Bordiga S, Lamberti C (2013) Dalton Trans 42:12741–12761 es_ES
dc.description.references Bordiga S, Regli L, Cocina D, Lamberti C, Bjorgen M, Lillerud KP (2005) J Phys Chem B 109:2779–2784 es_ES
dc.description.references Blasco T, Boronat M, Concepción P, Corma A, Law D, Vidal-Moya JA (2007) Angew Chem Int Ed 46:3938–3941 es_ES
dc.description.references Kondo JN, Nishitani R, Yoda E, Yokoi T, Tatsumi T, Domen K (2010) Phys Chem Chem Phys12:11576–11586 es_ES
dc.description.references Martens JA, Jacobs PA (2001) Stud Surf Sci Catal 137:633–671 es_ES
dc.description.references Dedecek J, Sobalík Z, Tvaruzková Z, Kaucký D, Wichterlová B (1995) J Phys Chem 99:16327–16337 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem