- -

Multistep High-Order Methods for Nonlinear Equations Using Pade-Like Approximants

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multistep High-Order Methods for Nonlinear Equations Using Pade-Like Approximants

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Hueso Pagoaga, José Luís es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2018-07-09T06:58:47Z
dc.date.available 2018-07-09T06:58:47Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1026-0226 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105555
dc.description.abstract [EN] We present new high-order optimal iterativemethods for solving a nonlinear equation, f(x) = 0, by using Pade-like approximants. We compose optimal methods of order 4 with Newton's step and substitute the derivative by using an appropriate rational approximant, getting optimal methods of order 8. In the same way, increasing the degree of the approximant, we obtain optimal methods of order 16. We also perform different numerical tests that confirm the theoretical results. es_ES
dc.description.sponsorship This work has been supported by Ministerio de Ciencia e Innovacion de Espana MTM2014-52016-C2-02-P and Generalitat Valenciana PROMETEO/2016/089. es_ES
dc.language Inglés es_ES
dc.publisher Hindawi Limited es_ES
dc.relation.ispartof Discrete Dynamics in Nature and Society es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Multistep High-Order Methods for Nonlinear Equations Using Pade-Like Approximants es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2017/3204652 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; Hueso Pagoaga, JL.; Martínez Molada, E.; Torregrosa Sánchez, JR. (2017). Multistep High-Order Methods for Nonlinear Equations Using Pade-Like Approximants. Discrete Dynamics in Nature and Society. 1-6. https://doi.org/10.1155/2017/3204652 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1155/2017/3204652 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 6 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\354871 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860 es_ES
dc.description.references Petković, M. S., Neta, B., Petković, L. D., & Džunić, J. (2013). Basic concepts. Multipoint Methods, 1-26. doi:10.1016/b978-0-12-397013-8.00001-7 es_ES
dc.description.references Bi, W., Ren, H., & Wu, Q. (2009). Three-step iterative methods with eighth-order convergence for solving nonlinear equations. Journal of Computational and Applied Mathematics, 225(1), 105-112. doi:10.1016/j.cam.2008.07.004 es_ES
dc.description.references Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2011). Three-step iterative methods with optimal eighth-order convergence. Journal of Computational and Applied Mathematics, 235(10), 3189-3194. doi:10.1016/j.cam.2011.01.004 es_ES
dc.description.references Liu, L., & Wang, X. (2010). Eighth-order methods with high efficiency index for solving nonlinear equations. Applied Mathematics and Computation, 215(9), 3449-3454. doi:10.1016/j.amc.2009.10.040 es_ES
dc.description.references Sharma, J. R., & Sharma, R. (2009). A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numerical Algorithms, 54(4), 445-458. doi:10.1007/s11075-009-9345-5 es_ES
dc.description.references Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2010). New modifications of Potra–Pták’s method with optimal fourth and eighth orders of convergence. Journal of Computational and Applied Mathematics, 234(10), 2969-2976. doi:10.1016/j.cam.2010.04.009 es_ES
dc.description.references Wang, X., & Liu, L. (2010). New eighth-order iterative methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 234(5), 1611-1620. doi:10.1016/j.cam.2010.03.002 es_ES
dc.description.references Neta, B., & Petković, M. S. (2010). Construction of optimal order nonlinear solvers using inverse interpolation. Applied Mathematics and Computation, 217(6), 2448-2455. doi:10.1016/j.amc.2010.07.045 es_ES
dc.description.references Fidkowski, K. J., Oliver, T. A., Lu, J., & Darmofal, D. L. (2005). p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. Journal of Computational Physics, 207(1), 92-113. doi:10.1016/j.jcp.2005.01.005 es_ES
dc.description.references Amat, S., & Busquier, S. (Eds.). (2016). Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI Springer Series. doi:10.1007/978-3-319-39228-8 es_ES
dc.description.references Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0 es_ES
dc.description.references He, Y., & Ding, C. H. Q. (2001). The Journal of Supercomputing, 18(3), 259-277. doi:10.1023/a:1008153532043 es_ES
dc.description.references Revol, N., & Rouillier, F. (2005). Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library. Reliable Computing, 11(4), 275-290. doi:10.1007/s11155-005-6891-y es_ES
dc.description.references King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072 es_ES
dc.description.references Maheshwari, A. K. (2009). A fourth order iterative method for solving nonlinear equations. Applied Mathematics and Computation, 211(2), 383-391. doi:10.1016/j.amc.2009.01.047 es_ES
dc.description.references Weerakoon, S., & Fernando, T. G. I. (2000). A variant of Newton’s method with accelerated third-order convergence. Applied Mathematics Letters, 13(8), 87-93. doi:10.1016/s0893-9659(00)00100-2 es_ES
dc.description.references Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem