- -

Advanced Layered Divsion Multiplexing Technologies for Next-Gen Broadcast

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Advanced Layered Divsion Multiplexing Technologies for Next-Gen Broadcast

Show simple item record

Files in this item

dc.contributor.advisor Gómez Barquero, David es_ES
dc.contributor.author Garro Crevillén, Eduardo es_ES
dc.date.accessioned 2018-07-09T07:00:00Z
dc.date.available 2018-07-09T07:00:00Z
dc.date.created 2018-06-04 es_ES
dc.date.issued 2018-07-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105559
dc.description.abstract Desde comienzos del siglo XXI, los sistemas de radiodifusión terrestre han sido culpados de un uso ineficiente del espectro asignado. Para aumentar la eficiencia espectral, los organismos de estandarización de TV digital comenzaron a desarrollar la evolución técnica de los sistemas de TDT de primera generación. Entre otros, uno de los objetivos principales de los sistemas de TDT de próxima generación (DVB-T2 y ATSC 3.0) es proporcionar simultáneamente servicios de TV a dispositivos móviles y fijos. El principal inconveniente de esta entrega simultánea son los diferentes requisitos de cada condición de recepción. Para abordar estas limitaciones, se han considerado diferentes técnicas de multiplexación. Mientras que DVB-T2 acomete la entrega simultánea de los dos servicios mediante TDM, ATSC 3.0 adoptó la Multiplexación por División en Capas (LDM). LDM puede superar a TDM y a FDM al aprovechar la relación de Protección de Error Desigual (UEP), ya que ambos servicios, llamados capas, utilizan todos los recursos de frecuencia y tiempo con diferentes niveles de potencia. En el lado del receptor, se distinguen dos implementaciones, de acuerdo con la capa a decodificar. Los receptores móviles solo están destinados a obtener la capa superior, conocida como Core Layer (CL). Para no aumentar su complejidad en comparación con los receptores de capa única, la capa inferior, conocida como Enhanced Layer (EL), es tratada como un ruido adicional en la decodificación. Los receptores fijos aumentan su complejidad, ya que deben realizar un proceso de Cancelación de Interferencia (SIC) sobre la CL para obtener la EL. Para limitar la complejidad adicional de los receptores fijos, las capas de LDM en ATSC 3.0 están configuradas con diferentes capacidades de corrección, pero comparten el resto de bloques de la capa física, incluido el TIL, el PP, el tamaño de FFT, y el GI. Esta disertación investiga tecnologías avanzadas para optimizar el rendimiento de LDM. Primero se propone una optimización del proceso de demapeo para las dos capas de LDM. El algoritmo propuesto logra un aumento de capacidad, al tener en cuenta la forma de la EL en el proceso de demapeo de la CL. Sin embargo, el número de distancias Euclidianas a computar puede aumentar significativamente, conduciendo no solo a receptores fijos más complejos, sino también a receptores móviles más complejos. A continuación, se determina la configuración de piloto ATSC 3.0 más adecuada para LDM. Teniendo en cuenta que las dos capas comparten el mismo PP, surge una contrapartida entre la densidad de pilotos (CL) y la redundancia sobre los datos (EL). A partir de los resultados de rendimiento, se recomienda el uso de un PP no muy denso, ya que ya han sido diseñados para hacer frente a ecos largos y altas velocidades. La amplitud piloto óptima depende del estimador de canal en los receptores (ej., se recomienda la amplitud mínima para una implementación Wiener, mientras que la máxima para una implementación FFT). También se investiga la potencial transmisión conjunta de LDM con tres tecnologías avanzadas adoptadas en ATSC 3.0: las tecnologías de agregación MultiRF, los esquemas de MISO distribuido y los de MIMO colocalizado. Se estudian los potenciales casos de uso, los aspectos de implementación del transmisor y el receptor, y las ganancias de rendimiento de las configuraciones conjuntas para las dos capas de LDM. Las restricciones adicionales de combinar LDM con las tecnologías avanzadas se consideran admisibles, ya que las mayores demandas ya están contempladas en ATSC 3.0 (ej., una segunda cadena de recepción). Se obtienen ganancias significativas en condiciones de recepción peatonal gracias a la diversidad en frecuencia proporcionada por las tecnologías MultiRF. La conjunción de LDM con esquemas de MISO proporciona ganancias de rendimiento significativas en redes SFN para la capa fija con el esquema de Alamouti. es_ES
dc.description.abstract Since the beginning of the 21st century, terrestrial broadcasting systems have been blamed of an inefficient use of the allocated spectrum. To increase the spectral efficiency, digital television Standards Developing Organizations settled to develop the technical evolution of the first-generation DTT systems. Among others, a primary goal of next-generation DTT systems (DVB-T2 and ATSC 3.0) is to simultaneously provide TV services to mobile and fixed devices. The major drawback of this simultaneous delivery is the different requirement of each reception condition. To address these constraints different multiplexing techniques have been considered. While DVB-T2 fulfilled the simultaneous delivery of the two services by TDM, ATSC 3.0 adopted the LDM technology. LDM can outperform TDM and FDM by taking advantage of the UEP ratio, as both services, namely layers, utilize all the frequency and time resources with different power levels. At receiver side, two implementations are distinguished, according to the intended layer. Mobile receivers are only intended to obtain the upper layer, known as CL. In order not to increase their complexity compared to single layer receivers, the lower layer, known as EL is treated as an additional noise on the CL decoding. Fixed receivers, increase their complexity, as they should performed a SIC process on the CL for getting the EL. To limit the additional complexity of fixed receivers, the LDM layers in ATSC 3.0 are configured with different error correction capabilities, but share the rest of physical layer parameters, including the TIL, the PP, the FFT size, and the GI. This dissertation investigates advanced technologies to optimize the LDM performance. A demapping optimization for the two LDM layers is first proposed. A capacity increase is achieved by the proposed algorithm, which takes into account the underlying layer shape in the demapping process. Nevertheless, the number of Euclidean distances to be computed can be significantly increased, contributing to not only more complex fixed receivers, but also more complex mobile receivers. Next, the most suitable ATSC 3.0 pilot configuration for LDM is determined. Considering the two layers share the same PP a trade-off between pilot density (CL) and data overhead (EL) arises. From the performance results, it is recommended the use of a not very dense PP, as they have been already designed to cope with long echoes and high speeds. The optimum pilot amplitude depends on the channel estimator at receivers (e.g. the minimum amplitude is recommended for a Wiener implementation, while the maximum for a FFT implementation). The potential combination of LDM with three advanced technologies that have been adopted in ATSC 3.0 is also investigated: MultiRF technologies, distributed MISO schemes, and co-located MIMO schemes. The potential use cases, the transmitter and receiver implementations, and the performance gains of the joint configurations are studied for the two LDM layers. The additional constraints of combining LDM with the advanced technologies is considered admissible, as the greatest demands (e.g. a second receiving chain) are already contemplated in ATSC 3.0. Significant gains are found for the mobile layer at pedestrian reception conditions thanks to the frequency diversity provided by MultiRF technologies. The conjunction of LDM with distributed MISO schemes provides significant performance gains on SFNs for the fixed layer with Alamouti scheme. Last, considering the complexity in the mobile receivers and the CL performance, the recommended joint configuration is MISO in the CL and MIMO in the EL. en_EN
dc.description.abstract Des de començaments del segle XXI, els sistemes de radiodifusió terrestre han sigut culpats d'un ús ineficient de l'espectre assignat. Per a augmentar l'eficiència espectral, els organismes d'estandardització de TV digital van començar a desenvolupar l'evolució tècnica dels sistemes de TDT de primera generació. Entre altres, un dels objectius principals dels sistemes de TDT de pròxima generació (DVB-T2 i el ATSC 3.0) és proporcionar simultàniament serveis de TV a dispositius mòbils i fixos. El principal inconvenient d'aquest lliurament simultani són els diferents requisits de cada condició de recepció. Per a abordar aquestes limitacions, s'han considerat diferents tècniques de multiplexació. Mentre que DVB-T2 escomet el lliurament simultani dels dos serveis mitjançant TDM, ATSC 3.0 va adoptar la Multiplexació per Divisió en Capes (LDM). LDM pot superar a TDM i a FDM en aprofitar la relació de Protecció d'Error Desigual (UEP), ja que tots dos serveis, cridats capes, utilitzen tots els recursos de freqüència i temps amb diferents nivells de potència. En el costat del receptor, es distingeixen dues implementacions, d'acord amb la capa a decodificar. Els receptors mòbils solament estan destinats a obtenir la capa superior, coneguda com Core Layer (CL). Per a no augmentar la seua complexitat en comparació amb els receptors de capa única, la capa inferior, coneguda com Enhanced Layer (EL), és tractada com un soroll addicional en la decodificació. Els receptors fixos augmenten la seua complexitat, ja que han de realitzar un procés de Cancel·lació d'Interferència (SIC) sobre la CL per a obtenir l'EL. Per a limitar la complexitat addicional dels receptors fixos, les capes de LDM en ATSC 3.0 estan configurades amb diferents capacitats de correcció, però comparteixen la resta de blocs de la capa física, inclòs el TIL, el PP, la grandària de FFT i el GI. Aquesta dissertació investiga tecnologies avançades per a optimitzar el rendiment de LDM. Primer es proposa una optimització del procés de demapeo per a les dues capes de LDM. L'algoritme proposat aconsegueix un augment de capacitat, en tenir en compte la forma de l'EL en el procés de demapeo de la CL. No obstant açò, el nombre de distàncies Euclidianes a computar pot augmentar significativament, conduint NO sols a receptors fixos més complexos, sinó també a receptors mòbils més complexos. A continuació, es determina la configuració de pilot ATSC 3.0 més adequada per a LDM. Tenint en compte que les dues capes comparteixen el mateix PP, es produeix una contrapartida entre la densitat de pilots (CL) i la redundància sobre les dades (EL). A partir dels resultats de rendiment, es recomana l'ús d'un PP no gaire dens, ja que ja han sigut dissenyats per a fer front a ecos llargs i altes velocitats. L'amplitud pilot òptima depèn de l'estimador de canal en els receptors (ex., es recomana l'amplitud mínima per a una implementació Wiener, mentre que la màxima per a una implementació FFT). També s'investiga la potencial transmissió conjunta de LDM amb tres tecnologies avançades adoptades en ATSC 3.0: les tecnologies d'agregació de MultiRF, els esquemes de MISO distribuït i els de MIMO colocalitzat. S'estudien els potencials casos d'ús, els principals aspectes d'implementació del transmissor i el receptor, i els guanys de rendiment de les configuracions conjuntes per a les dues capes de LDM. Les restriccions addicionals de combinar LDM amb les tecnologies avançades es consideren admissibles, ja que les majors demandes ja estan contemplades en ATSC 3.0 (ex., una segona cadena de recepció). S'obtenen guanys significatius per a la capa mòbil en condicions de recepció per als vianants gràcies a la diversitat en freqüència proporcionada per les tecnologies MultiRF. La conjunció de LDM amb esquemes MISO distribuïts proporciona guanys de rendiment significatius en xarxes SFN per a la capa fixa amb l'esquema d'Alamouti. ca_ES
dc.language Inglés es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Layered Division Multiplexing (LDM) es_ES
dc.subject Non-Orthogonal Multiple Access (NOMA) es_ES
dc.subject Next-Generation Terrestrial Broadcasting es_ES
dc.subject ATSC 3.0, es_ES
dc.subject Digital Television es_ES
dc.subject MISO es_ES
dc.subject MIMO es_ES
dc.subject Channel Bonding (CB) es_ES
dc.subject Time Frequency Slicing es_ES
dc.subject Channel Estimation es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Advanced Layered Divsion Multiplexing Technologies for Next-Gen Broadcast es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/105559 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Garro Crevillén, E. (2018). Advanced Layered Divsion Multiplexing Technologies for Next-Gen Broadcast [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/105559 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\10559 es_ES


This item appears in the following Collection(s)

Show simple item record