Mostrar el registro sencillo del ítem
dc.contributor.author | Julien, Y. | es_ES |
dc.contributor.author | Sobrino, J. A. | es_ES |
dc.date.accessioned | 2018-07-09T08:22:39Z | |
dc.date.available | 2018-07-09T08:22:39Z | |
dc.date.issued | 2018-05-29 | |
dc.identifier.issn | 1133-0953 | |
dc.identifier.uri | http://hdl.handle.net/10251/105566 | |
dc.description.abstract | [EN] This paper introduces the Time Series Simulation for Benchmarking of Reconstruction Techniques (TISSBERT) dataset, intended to provide a benchmark for the validation and comparison of time series reconstruction methods. Such methods are routinely used to estimate vegetation characteristics from optical remotely sensed data, where the presence of clouds decreases the usefulness of the data. As for their validation, these methods have been compared with previously published ones, although with different approaches, which sometimes lead to contradictory results. We designed the TISSBERT dataset to be generic so that it could simulate realistic reference and cloud-contaminated time series at global scale. To that end, we estimated both cloud-free and cloud-contaminated Normalized Difference Vegetation Index (NDVI) statistics for randomly selected control points and each day of the year from the Long Term Data Record Version 4 (LTDR-V4) dataset by assuming different statistical distributions. The best approach was then applied to the whole dataset, and validity of the results were estimated through the Kolmogorov-Smirnov statistic. The dataset elaboration is described thoroughly along with how to use it. The advantages and drawbacks of this dataset are then discussed, which emphasize the realistic simulation of the cloud-contaminated and reference time series. This dataset can be obtained from the authors upon demand. It will be used in a next paper to compare widely used NDVI time series reconstruction methods. | es_ES |
dc.description.abstract | [ES] En este trabajo se presenta la base de datos titulada Time Series Simulation for Benchmarking of Reconstruction Techniques (TISSBERT) con el propósito de ofrecer una herramienta para la validación y la comparación de métodos para la reconstrucción de series temporales. Tales métodos se usan de manera rutinaria para la estimación de características de la vegetación a partir de datos obtenidos por teledetección óptica, donde la presencia de nubes disminuye su utilidad. En cuanto a su validación, estos métodos se han comparado con otros publicados anteriormente, aunque desde perspectivas diferentes, lo cual conduce a resultados contradictorios. La base de datos TISSBERT se ha diseñado como una herramienta genérica para una simulación realista a escala global de series temporales de referencia o contaminadas por nubes. Para ello, se estimaron estadísticas de Normalized Difference Vegetation Index (NDVI) con y sin contaminación de nubes para unos píxeles de control seleccionados de manera aleatoria, y para cada día del año, usando la base de datos Long Term Data Record Version 4 (LTDR-V4), y probando con varias distribuciones estadísticas. La mejor metodología se aplicó al conjunto de la base de datos, y la validez de los resultados se comprobó con la prueba de Kolmogorov-Smirnov. La elaboración de la base de datos se describe detalladamente así como la manera de usarla. Finalmente, se analizan las ventajas y los inconvenientes de la base de datos TISSBERT, los cuales enfatizan la simulación realista de series temporales de referencia y con contaminación nubosa. Esta base de datos se puede obtener gratuitamente de los autores, y se usará en un futuro para comparar métodos usuales de reconstrucción de series temporales de NDVI. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministerio de Economía y Competitividad (CEOS-SPAIN2, project ESP2014-52955-R and SIM, project PCIN-2015-232). The authors also thank NASA for the free access to the LTDRV4 data. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Revista de Teledetección | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | NDVI | es_ES |
dc.subject | Relleno de huecos | es_ES |
dc.subject | Reconstrucción | es_ES |
dc.subject | Base de datos | es_ES |
dc.subject | Comparación | es_ES |
dc.subject | Gap-filling | es_ES |
dc.subject | Reconstruction | es_ES |
dc.subject | Dataset | es_ES |
dc.subject | Comparison | es_ES |
dc.title | TISSBERT: A benchmark for the validation and comparison of NDVI time series reconstruction methods | es_ES |
dc.title.alternative | TISSBERT: una referencia para la validación y la comparación de métodos para la reconstrucción de series temporales de NDVI | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2018-07-09T07:16:18Z | |
dc.identifier.doi | 10.4995/raet.2018.9749 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ESP2014-52955-R/ES/CALIBRACION DE SATELITES DE OBSERVACION DE LA TIERRA EN ESPAÑA: DESARROLLO, DISTRIBUCION Y APLICACION DE PRODUCTOS SATELITALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Julien, Y.; Sobrino, JA. (2018). TISSBERT: A benchmark for the validation and comparison of NDVI time series reconstruction methods. Revista de Teledetección. (51):19-31. https://doi.org/10.4995/raet.2018.9749 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/raet.2018.9749 | es_ES |
dc.description.upvformatpinicio | 19 | es_ES |
dc.description.upvformatpfin | 31 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 51 | |
dc.identifier.eissn | 1988-8740 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Beck, P., Atzberger, C., Hogda, K.A., Johansen, B. Skidmore A. 2006. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sensing of Environment, 100, 321-334. https://doi.org/ 10.1016/j.rse.2005.10.021 | es_ES |
dc.description.references | Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., Eklundh, L. 2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sensing of Environment, 91, 332-334. https://doi.org/ 10.1016/j.rse.2004.03.014 | es_ES |
dc.description.references | Cho, AR., Suh, M.S. 2013. Detection of contaminated pixels based on the short-term continuity of NDVI and correction using spatio-temporal continuity. Asia-Pacific Journal of Atmospheric Sciences, 49(4), 511-525. https://doi.org/10.1007/s13143-013- 0045-7 | es_ES |
dc.description.references | Geng, L., Ma, M., Wang, X., Yu, W., Jia, S. and Wang, H. 2014. Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the Heihe river basin, China. Remote Sensing, 2014, 6, 2024-2049 | es_ES |
dc.description.references | Hird, J.N., McDermid, G.J. 2009. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sensing of Environment, 113, 248-258. https://doi.org/10.3390/rs6032024 | es_ES |
dc.description.references | Holben, B.N. 1986. Characteristics of maximum-value composite image from temporal AVHRR data. International Journal of Remote Sensing, 7, 1417- 1434. https://doi.org/10.1080/01431168608948945 | es_ES |
dc.description.references | Jönsson, P., Eklundh, L. 2004. TIMESAT - A program for analyzing time-series of satellite sensor data. Computers and Geoscience, 30, 833-845. https://doi.org/10.1016/j.cageo.2004.05.006 | es_ES |
dc.description.references | Julien, Y., Sobrino, J.A. 2009. Global land surface phenology trends from GIMMS database. International Journal of Remote Sensing, 30(13), 3495-3513. https://doi.org/ 10.1080/01431160802562255 | es_ES |
dc.description.references | Julien, Y., Sobrino, J.A. 2010. Comparison of cloudreconstruction methods for time series of composite NDVI data. Remote Sensing of Environment, 114, 618-625. https://doi.org/10.1016/j.rse.2009.11.001 | es_ES |
dc.description.references | Julien, Y., Sobrino, J.A. 2012. Correcting Long Term Data Record V3 estimated LST from orbital drift effects. Remote Sensing of Environment, 123, 207- 219. https://doi.org/10.1016/j.rse.2012.03.016 | es_ES |
dc.description.references | Julien, Y., Sobrino, J.A., Verhoef, W. 2006. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sensing of Environment, 103, 43-55. https://doi.org/10.1016/j.rse.2006.03.011 | es_ES |
dc.description.references | Ke, L., Ding, X., Song, C. 2013. Reconstruction of time series MODIS LST in central Qinghai-Tibet plateau using geostatistical approach. IEEE Geoscience and Remote Sensing Letters, 10(6), 1602-1606. https://doi.org/10.1109/LGRS.2013.2263553 | es_ES |
dc.description.references | Lin, C.H., Lai, K.H., Chen, Z.B., Chen, J.Y. 2014. Patch-based information reconstruction of cloud-contaminated multitemporal images. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 163-174. https://doi.org/10.1109/ TGRS.2012.2237408 | es_ES |
dc.description.references | Ma, M., Veroustraete, F. 2006. Reconstructing pathfinder AVHRR land NDVI timeseries data for the Northwest of China. Advances in Space Research, 37, 835-840. https://doi.org/10.1016/j.asr.2005.08.037 | es_ES |
dc.description.references | Michishita, R., Jin, Z., Chen, J., Xu, B. 2014. Empirical comparison of noise reduction techniques for NDVI time-series based on a new measure. ISPRS Journal of Photogrammetry and Remote Sensing, 91, 17-28. https://doi.org/10.1016/j.isprsjprs.2014.01.003 | es_ES |
dc.description.references | Moreno, A., García-Haro, F.J., Martínez, B., Gilabert, M.A. 2014. Noise Reduction and Gap Filling of fAPAR Time Series Using an Adapted Local Regression Filter. Remote Sensing, 6, 8238-8260. https://doi.org/10.3390/rs6098238 | es_ES |
dc.description.references | Munyati, C., Mboweni, G. 2012. Variation in NDVI values with change in spatial resolution for semi-arid savanna vegetation: a case study in northwestern South Africa. International Journal of Remote Sensing, 34(7), 2253-2267. https://doi.org/10.1080/01431161.2012.743692 | es_ES |
dc.description.references | Pedelty, J., Devadiga, S., Masuoka, E., Brown, M., Pinzon, J., Tucker, C., et al. 2007. Generating a long-term land data record from the AVHRR and MODIS instruments. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2007, 1021-1025, https://doi.org/10.1109/IGARSS.2007.4422974 | es_ES |
dc.description.references | Poggio, L., Gimona, A., Brown, I. 2012. Spatiotemporal MODIS EVI gap filling under cloud cover: an example in Scotland. ISPRS Journal of Photogrammetry and Remote Sensing, 72, 56-72. https://doi.org/10.1016/j.isprsjprs.2012.06.003 | es_ES |
dc.description.references | Roerink, G.J., Menenti, M., Verhoef, W. 2000. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. International Journal of Remote Sensing, 21(9), 1911-1917. https://doi.org/10.1080/014311600209814 | es_ES |
dc.description.references | Rouse, J.W., Haas, R.H., Scheel, J.A., Deering, D.W. 1974. Monitoring Vegetation Systems in the Great Plains with ERTS. 3rd Earth Resource Technology Satellite (ERTS) Symposium Proceedings, Vol. 1, 48-62. | es_ES |
dc.description.references | Sobrino, J.A. Julien, Y. 2011. Global trends in NDVI derived parameters obtained from GIMMS data. International Journal of Remote Sensing, 32(15), 4267-4279. https://doi.org/10.1080/01431161.2010 .486414 | es_ES |
dc.description.references | Sobrino, J.A., Julien, Y. 2016. Exploring the validity of the Long Term Data Record V4 database for land surface monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 99, 1-8, https://doi.org/10.1109/ JSTARS.2016.2567642 | es_ES |
dc.description.references | Swinnen, E., Veroustraete, F. 2008. Extending the SPOT-VEGETATION time series (1998-2006) back in time with NOAA-AVHRR data (1985- 1998) for Southern Africa. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 558-572. https://doi.org/10.1109/TGRS.2007.909948 | es_ES |
dc.description.references | Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127-150. https://doi.org/10.1016/0034-4257(79)90013-0 | es_ES |
dc.description.references | Tucker, C.J., Pinzon, J.E., Brown, M.E., Slayback, D.A. Pak, E.W., Mahoney, R., Vermote, E.F., El Saleous, N. 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), 4485-4498. https://doi.org/10.1080/01431160500168686 | es_ES |
dc.description.references | van Dijk, A., Callis, S., Sakamoto, C. and Decker, W. 1987. Smoothing vegetation index profiles: An alternative method for reducing radiometric disturbance in NOAA/AVHRR data. Photogrammetric Engineering and Remote Sensing, 53, 1059-1067. | es_ES |
dc.description.references | Viovy, N., Arino, O., Velward, A. 1992. The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series International Journal of Remote Sensing, 13, 1585-1590. https://doi.org/10.1080/01431169208904212 | es_ES |
dc.description.references | Weiss, D.J., Atkinson, P.M., Bhatt, S., Mappin, B., Hay, S.I., Gething, P.W. 2014. An effective approach for gap-filling continental scale remotely sensed time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 98, 106-118. https://doi.org/10.1016/j.isprsjprs.2014.10.001 | es_ES |
dc.description.references | White, M.A., De Beurs, K.M., Didan, K., Inouye, D. W., Richardson, A.D., et al. 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Global Change Biology, 15, 2335-2359. https://doi.org/10.1111/j.1365-2486.2009.01910.x | es_ES |
dc.description.references | Xiao, Z., Liang, S., Wang, T., Liu, Q. 2015. Reconstruction of satellite-retrieved land-surface reflectance based on temporally-continuous vegetation indices. Remote Sensing, 7, 9844-9864. https://doi.org/10.3390/rs70809844 | es_ES |
dc.description.references | Xu, L., Li, B., Yuan, Y., Gao, X., Zhang, T. 2015. A temporal-spatial iteration method to reconstruct NDVI time series datasets. Remote Sensing, 7, 8906- 8924. https://doi.org/10.3390/rs70708906 | es_ES |
dc.description.references | Yang, G., Shen, H., Zhang, L., He, Z. and Li, X. 2015. A moving weighted harmonic analysis method for reconstructing high-quality SPOT VEGETATION NDVI time-series data. IEEE Transactions on Geoscience and Remote Sensing, 53(11), 6008- 6021. https://doi.org/10.1109/TGRS.2015.2431315 | es_ES |
dc.description.references | Zhou, J., Jia, L. and Menenti, M. 2015. Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time Series (HANTS). Remote Sensing of Environment, 163, 217-228. https://doi.org/10.1016/j.rse.2015.03.018 | es_ES |