- -

Combination of satellite imagery with meteorological data for estimating reference evapotranspiration

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Combination of satellite imagery with meteorological data for estimating reference evapotranspiration

Show simple item record

Files in this item

dc.contributor.author Montero, D. es_ES
dc.contributor.author Echeverry, F. es_ES
dc.contributor.author Hernández, F. es_ES
dc.date.accessioned 2018-07-10T07:01:41Z
dc.date.available 2018-07-10T07:01:41Z
dc.date.issued 2018-06-29
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/105602
dc.description.abstract [EN] The Food and Agriculture Organization of the United Nations (FAO) in its publication No. 56 of the Irrigation and Drainage Series presents the FAO Penman-Monteith procedure for the estimation of reference evapotranspiration from meteorological data, however, its calculation may be complicated in areas where there are no weather stations. This paper presents an evaluation of the potential of the Land Surface Temperature and Digital Elevation Models products derived from the MODIS and ASTER sensors, both on board the Terra EOS AM-1 satellite, for the estimation of reference evapotranspiration using the Penman-Monteith FAO-56, Hargreaves, Thornthwaite and Blaney-Criddle models. The four models were compared with the method proposed by FAO calculated with the observed data of a ground based meteorological station, finding a significant relation with the models Penman-Monteith FAO-56 and Hargreaves. es_ES
dc.description.abstract [ES] La Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) en su publicación No 56 de la Serie de Riego y Drenaje presenta el procedimiento FAO Penman-Monteith para la estimación de la evapotranspiración de referencia a partir de datos meteorológicos, no obstante, su cálculo puede complicarse en zonas donde no se cuenta con estaciones meteorológicas. El presente artículo exhibe una evaluación del potencial de productos de Temperatura Superficial Terrestre y Modelos Digitales de Elevación derivados de imágenes adquiridas por los sensores MODIS y ASTER, ambos a bordo del satélite Terra EOS AM-1, para la estimación de la evapotranspiración de referencia utilizando los modelos de Penman-Monteith FAO-56, Hargreaves, Thornthwaite y Blaney-Criddle. Los cuatro modelos fueron comparados con el método propuesto por la FAO calculado con datos observados de una estación meteorológica en tierra, encontrando una relación significativa con los modelos Penman-Monteith FAO-56 y Hargreaves. es_ES
dc.description.sponsorship The authors thank the Sugarcane Research Center of Colombia (Cenicaña) for providing the necessary data and sharing their knowledge in several of the areas covered here. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Revista de Teledetección
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Land surface temperature es_ES
dc.subject MODIS es_ES
dc.subject ASTER es_ES
dc.subject Reference evapotranspiration es_ES
dc.subject FAO es_ES
dc.subject Temperatura Superficial Terrestre es_ES
dc.subject Evapotranspiración de referencia es_ES
dc.title Combination of satellite imagery with meteorological data for estimating reference evapotranspiration es_ES
dc.title.alternative Combinación de imágenes satelitales con datos meteorológicos para la estimación de la evapotranspiración de referencia es_ES
dc.type Artículo es_ES
dc.date.updated 2018-07-09T07:15:41Z
dc.identifier.doi 10.4995/raet.2018.7688
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Montero, D.; Echeverry, F.; Hernández, F. (2018). Combination of satellite imagery with meteorological data for estimating reference evapotranspiration. Revista de Teledetección. (51):75-85. doi:10.4995/raet.2018.7688 es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2018.7688 es_ES
dc.description.upvformatpinicio 75 es_ES
dc.description.upvformatpfin 85 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 51
dc.identifier.eissn 1988-8740
dc.relation.references Ackerman, S., Strabala, K., Menzel, P., Frey, R., Moeller, C., Gumley, L., Baum, B., Seemann, S., Zhang, H. 2006. Discriminating clear-sky from clouds with MODIS, Algorithm theoretical basis document (MOD35). Madison, Wisconsin: University of Wisconsin-Madison. es_ES
dc.relation.references Allen, R. G., Pereira, L. S., Raes, D., Smith, M. 2006. Evapotranspiración del cultivo, Guías para la determinación de los requerimientos de agua de los cultivos. Roma: FAO. es_ES
dc.relation.references Berti, A., Tardivo, G., Chiaudani, A., Rech, F., Borin, M. 2014. Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agricultural Water Management, 140, 20-25. https://doi.org/10.1016/j.agwat.2014.03.015 es_ES
dc.relation.references Blaney, H. F., Criddle, W. D., 1950. Determining water requirements in irrigated areas from climatological and irrigation data. Washington, D.C.: U.S. Soil Conservation Service. es_ES
dc.relation.references Byun, K., Waqas Liaqat, U., Choi, M. 2014. Dual-model approaches for evapotranspiration analyses over homo and heterogeneous land surface conditions. Agricultural and Forest Meteorology, 197, 169-187. https://doi.org/10.1016/j.agrformet.2014.07.001 es_ES
dc.relation.references Cai, J., Liu, Y., Lei, T., Santos Pereira, L. 2007. Estimating reference evapotranspiration with the FAO Penman-Monteith equation using daily weather forecast messages. Agricultural and Forest Meteorology, 145, 22-35. https://doi.org/10.1016/ j.agrformet.2007.04.012 es_ES
dc.relation.references Cervantes-Osornio, R., Arteaga-Ramírez, R., VázquezPeña, M. A., Ojeda-Bustamante, W., QuevedoNolasco, A. 2013. Modelos Hargreaves PriestleyTaylor y redes neuronales artificiales en la estimación de la evapotranspiración de referencia. Ingeniería Investigación y Tecnología, 14(2), 163-176. https://doi.org/10.1016/S1405-7743(13)72234-0 es_ES
dc.relation.references Cruz-Blanco, M., Gavilán, P., Santos, C., Lorite, I. J. 2014. Assessment of reference evapotranspiration using remote sensing andforecasting tools under semi-arid conditions. International Journal of Applied Earth Observation and Geoinformation, 33, 280-289. https://doi.org/10.1016/j.jag.2014.06.008 es_ES
dc.relation.references Djaman, K., Balde, A. B., Sow, A., Muller, B., Irmak, S., N'Diaye, M. K., Manneh, B., Moukoumbi, Y. D., Futakuchi, K., Saito, K. 2015. Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. Journal of Hydrology: Regional Studies, 3, 139- 159. https://doi.org/10.1016/j.ejrh.2015.02.002 es_ES
dc.relation.references Doorenbos, J., Pruitt, W. O. 1977. Guidelines for predicting crop water requirements. Roma: FAO. es_ES
dc.relation.references Gavilán, P., Lorite, I. J., Tornero, S., Berengena, J. 2006. Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment. Agricultural Water Management, 81(3), 257-281. https://doi.org/10.1016/j.agwat.2005.05.001 es_ES
dc.relation.references Gesch, D., Oimoen, M., Zhang, Z., Danielson, J., Meyer, D. 2012. Validation of the ASTER Global Digital Elevation Model (GDEM) Version 2 over the Conterminous United States. U.S. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4. Melbourne, Australia, 15 Agosto - 1 Septiembre. pp 281-286. es_ES
dc.relation.references Hargreaves, G., Samani, Z. 1982. Estimating potential evapotranspiration. Journal of the Irrigation and Drainage Division, 108(3), 225-230. es_ES
dc.relation.references Hashimoto, H., Dungan, J. L., White, M. A., Yang, F., Michaelis, A. R., Running, S. W., Nemani, R. R. 2008. Satellite-based estimation of surface vapor pressure deficits using MODIS land surface temperature data. Remote Sensing of Environment, 112(1), 142-155. https://doi.org/10.1016/j.rse.2007.04.016 es_ES
dc.relation.references Jabloun, M., Sahli, A. 2008. Evaluation of FAO56 methodology for estimating reference evapotranspiration using limited climatic data Application to Tunisia. Agricultural Water Management, 95(6), 707-715. https://doi.org/ 10.1016/j.agwat.2008.01.009 es_ES
dc.relation.references Kashyap, P. S., Panda, R. K. 2001. Evaluation of evapotranspiration estimation methods and development of crop coefficients for potato crop in a sub-humid region. Agricultural Water Management, 50(1), 9-25. https://doi.org/10.1016/S0378- 3774(01)00102-0 es_ES
dc.relation.references López-Urrea, R., Martín de Santa Olalla, F., Fabeiro, C., Moratalla, A. 2006. Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agricultural Water Management, 85, 15-26. https://doi.org/10.1016/j.agwat.2006.03.014 es_ES
dc.relation.references Maeda, E. E., Wiberg, D. A., Pellikka, P. K. E. 2011. Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Applied Geography, 31, 251-258. https://doi.org/10.1016/j.apgeog.2010.05.011 es_ES
dc.relation.references Manesh, S. S., Ahani, H., Rezaeian-Zadeh, M. 2014. ANN-based mapping of monthly reference crop evapotranspiration by using altitude, latitude and longitude data in Fars province, Iran. Environment, Development and Sustainability, 16(1), 103-122. https://doi.org/10.1007/s10668-013-9465-x es_ES
dc.relation.references Martínez-Cob, A., Tejero-Juste, M. 2004. A windbased qualitative calibration of the Hargreaves ET0 estimation equation in semiarid regions. Agricultural Water Management, 64(3), 251-264. https://doi.org/10.1016/S0378-3774(03)00199-9 es_ES
dc.relation.references Maselli, F., Papale, D., Chiesi, M., Matteucci, G., Angeli, L., Raschi, A., Seufert, G. 2014. Operational monitoring of daily evapotranspiration by the combination of MODIS NDVI and ground meteorological data: Application and evaluation in Central Italy. Remote Sensing of Environment, 152, 279-290. https://doi.org/10.1016/j.rse.2014.06.021 es_ES
dc.relation.references Meyer, D. J., Tachikawa, T., Abrams, M., Crippen, R., Krieger, T., Gesch, D., Carabajal, C. 2012. Summary of the validation of the second version of the ASTER GDEM. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4. Melbourne, Australia, 15th August - 1st September. pp 291-293. https://doi.org/10.5194/isprsarchivesXXXIX-B4-291-2012 es_ES
dc.relation.references Mildrexler, D. J., Zhao, M., Running, S. W. 2011. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. Journal Of Geophysical Research, 116, 1-15. https://doi.org/10.1029/2010JG001486 es_ES
dc.relation.references Nolan, R. H., Resco de Dios, V., Boer, M. M., Caccamo, G., Goulden, M. L., Bradstock, R. A. 2016. Predicting dead fine fuel moisture at regional scales using vapour pressure deficit from MODIS and gridded weather data. Remote Sensing of Environment, 174, 100-108. https://doi.org/10.1016/j.rse.2015.12.010 es_ES
dc.relation.references Rahimikhoob, A., Hosseinzadeh, M. 2014. Assessment of Blaney-Criddle Equation for Calculating Reference Evapotranspiration with NOAA/AVHRR Data. Water Resour Manage, 28(10), 3365-3375. https://doi.org/10.1007/s11269-014-0670-7 es_ES
dc.relation.references Sánchez, M., Chuvieco, E. 2000. Estimación de evapotranspiración del cultivo de referencia, ETo , a partir de imágenes NOAA-AVHRR. Revista de Teledetección, 14, 1-10. Available at: http://www.aet.org.es/?q=revista14-2 [Last access: June 2018]. es_ES
dc.relation.references Sentelhas, P. C., Gillespie, T. J., Santos, E. A. 2010. Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agricultural Water Management, 97(5), 635-644. https://doi.org/10.1016/j.agwat.2009.12.001 es_ES
dc.relation.references Thornthwaite, C. W. 1948. An Approach toward a Rational Classification of Climate. Geographical Review, 38(1), 55-94. https://doi.org/10.2307/210739 es_ES
dc.relation.references Todorovic, M., Karic, B., Pereira, L. S. 2013. Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates. Journal of Hydrology, 481, 166-176. https://doi.org/10.1016/j.jhydrol.2012.12.034 es_ES
dc.relation.references Valencia, J. M., García, C. E., Montero, D. 2017. Anomalías de vegetación asociadas con el fenómeno del ENOS en el valle geográfico del río Cauca, Colombia. Revista de Teledetección, 50, 89-99. https://doi.org/10.4995/raet.2017.7715 es_ES
dc.relation.references Vicente-Serrano, S. M., Azorin-Molina, C., SanchezLorenzo, A., Revuelto, J., López-Moreno, J. I., González-Hidalgo, J. C., Morán-Tejadam E., Espejo, F. 2014. Reference evapotranspiration variability and trends in Spain, 1961-2011. Global and Planetary Change, 121, 26-40. https://doi.org/10.1016/j.gloplacha.2014.06.005 es_ES
dc.relation.references Walter, I. A., Allen, R. G., Elliott, R., Jensen, M., Itenfisu, D., Mecham, B., Howell, T., Snyder, R., Brown, P., Echings, S., Spofford, T., Hattendorf, M., Cuenca, R. H., Wright, J. L., Martin, D. 2000. ASCE Standarized Reference Evapotranspiration Equation. In: Watershed Management and Operations Management 2000. Fort Collins, Colorado, U.S., june 20-24. pp 1-11. es_ES
dc.relation.references Zipper, S. C., Loheide, S. P. 2014. Using evapotranspiration to assess drought sensitivity on a subfield scale with HRMET, a high resolution surface energy balance model. Agricultural and Forest Meteorology, 197, 91-102. https://doi.org/10.1016/j.agrformet.2014.06.009 es_ES
dc.relation.references Zhu, W., Lü, A., Jia, S. 2013. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sensing of Environment, 130, 62-73. https://doi.org/10.1016/j.rse.2012.10.034 es_ES


This item appears in the following Collection(s)

Show simple item record