- -

Evaluación de dos modelos para la estimación de la evapotranspiración de referencia con datos CERES

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluación de dos modelos para la estimación de la evapotranspiración de referencia con datos CERES

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carmona, F. es_ES
dc.contributor.author Holzman, M. es_ES
dc.contributor.author Rivas, R. es_ES
dc.contributor.author Degano, M.F. es_ES
dc.contributor.author Kruse, E. es_ES
dc.contributor.author Bayala, M. es_ES
dc.date.accessioned 2018-07-10T07:07:57Z
dc.date.available 2018-07-10T07:07:57Z
dc.date.issued 2018-06-29
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/105603
dc.description.abstract [EN] Evapotranspiration is the most important variable in the Pampas plain. Information provided by sensors onboard satellite missions allows represent the spatial and temporal variability of evapotranspiration, which cannot be achieved using only measurements of weather stations. In this work, the Priestley and Taylor (PT) and FAO Penman Monteith (FAO PM) equations were adapted to estimate the reference evapotranspiration, ET0 , using only CERES satellite products (SYN1 and CldTypHist). In order to evaluate the reference evapotranspiration from CERES, a comparison with in situ measurements was conducted. We used ET data provided by the Oficina de Riesgo Agropecuario, corresponding to 24 stations placed in the Pampean Region of Argentina (2001-2016). Results showed very good agreement between the estimates with CERES products and in situ values, with errors between ±0.8 and ±1.1 mm d–1 and r2 greater than 0.75 at daily scale, and errors between ±14 and ±19 mm month–1 and r2 greater than 0.9, at monthly scale better results were obtained with adapted model FAO PM than PT. Finally, ET0 monthly maps for the Pampean Region of Argentina were elaborated, which allowed knowing the temporal-spatial variation in the validation area. In conclusion, the methods presented here are a suitable alternative to estimate the reference evapotranspiration without requiring ground measurements. es_ES
dc.description.abstract [ES] La evapotranspiración es la variable hidrológica de mayor relevancia en la llanura pampeana. La información provista por sensores a bordo de satélites permite representar la variabilidad espacio-temporal de la evapotranspiración, lo cual no es posible lograr utilizando únicamente datos de sitios puntuales de medida. En este trabajo se adaptaron las ecuaciones de Priestley y Taylor (PT) y FAO Penman-Monteith (FAO PM) para obtener la evapotranspiración del cultivo de referencia, ET0 , utilizando únicamente datos de los productos de satélite CERES (SYN1 y CldTypHist). Los resultados obtenidos con los datos CERES se compararon con valores de ET0 provistos por la Oficina de Riesgo Agropecuario de Argentina, a partir de información de 24 estaciones agro-meteorológicas distribuidas en la Región Pampeana de Argentina (2001-2016). Los resultados mostraron muy buena concordancia entre los valores generados con los métodos propuestos y aquellos obtenidos in situ, con errores de entre ±0,8 y ±1,1 mm d–1 y r2 superiores a 0,75 a escala diaria, y errores de entre ±14 y ±19 mm mes–1 y r2 superiores a 0,9, a escala mensual, siendo en general mejores los resultados con el método adaptado de FAO PM respecto al de PT. Finalmente, se elaboraron los mapas promedio mensual de la ET0 para la Región Pampeana de Argentina, los cuales permitieron conocer la variación espacio temporal en el área de validación. En conclusión, los métodos que aquí se presentan constituyen una buena alternativa para el cálculo de la evapotranspiración de referencia, sin necesidad de contar con medidas de terreno. es_ES
dc.description.sponsorship El trabajo se realizó gracias a fondos otorga-dos por la Agencia Nacional de Promoción Científica y Tecnológica de Argentina, PICT 2016-1486- Estudio de la evapotranspiración en la llanura pampeana argentina a partir de datos de satélite (EVAPAMPAS), y el Consejo Nacional de Investigaciones Científicas y Técnicas. Los autores además desean agradecer a la Comisión de Investigaciones Científicas de Buenos Aires, la Universidad Nacional del Centro de la provincia de Buenos Aires, a la Oficina de Riesgo Agropecuario de Argentina, y al Atmospheric Science Data Center de la NASA Langley Research Center por proveer los datos CERES. Además, se agradece a los revisores anónimos que contribuyeron para mejorar el documento. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Revista de Teledetección
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject CERES es_ES
dc.subject Teledetección es_ES
dc.subject Evapotranspiración del cultivo de referencia es_ES
dc.subject Remote sensing es_ES
dc.subject Reference evapotranspiration es_ES
dc.title Evaluación de dos modelos para la estimación de la evapotranspiración de referencia con datos CERES es_ES
dc.title.alternative Evaluation of two models using CERES data for reference evapotranspiration estimation es_ES
dc.type Artículo es_ES
dc.date.updated 2018-07-09T07:16:00Z
dc.identifier.doi 10.4995/raet.2018.9259
dc.relation.projectID info:eu-repo/grantAgreement/ANPCyT//PICT-2016-1486/AR/Estudio de la evapotranspiración en la llanura pampeana argentina a partir de datos de satélite (EVAPAMPAS)/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Carmona, F.; Holzman, M.; Rivas, R.; Degano, M.; Kruse, E.; Bayala, M. (2018). Evaluación de dos modelos para la estimación de la evapotranspiración de referencia con datos CERES. Revista de Teledetección. (51):87-98. https://doi.org/10.4995/raet.2018.9259 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2018.9259 es_ES
dc.description.upvformatpinicio 87 es_ES
dc.description.upvformatpfin 98 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 51
dc.identifier.eissn 1988-8740
dc.contributor.funder Agencia Nacional de Promoción Científica y Tecnológica, Argentina
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
dc.description.references Aliaga, V.S., Ferrelli, F., Piccolo, M.C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37, 1237-1247. https://doi.org/10.1002/joc.5079 es_ES
dc.description.references Allen R.G., Tasumi M., Trezza R. 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - model. J. Irrig. Drain. Eng. ASCE, 133, 380-394. https://doi. org/10.1061/(ASCE)0733-9437(2007)133:4(380) es_ES
dc.description.references Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 1998. FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration. (F.W. Resources, Ed.), Irrigation and Drainage. Fao. Retrieved from http://www.kimberly.uidaho.edu/water/fao56/ fao56.pdf es_ES
dc.description.references Anderson M.C., Norman J.M., Diak G.R., Kustas W.P., Mecikalski J.R. 1997. A twosource time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens Environ, 60, 195-216. https://doi.org/10.1016/S0034-4257(96)00215-5 es_ES
dc.description.references ASCE - EWRI. 2005. The ASCE standardized reference evapotranspiration equation. ASCE-EWRI Standardization of Reference Evapotranspiration Task Comm. Report, January, 2005. http:// www.kimberly.uidaho.edu/water/asceewri/ ascestzdetmain2005.pdf. es_ES
dc.description.references Bastiaanssen W.G.M., Menenti M., Feddes R.A., Holtslag A.A.M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol, 212-213, 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4 es_ES
dc.description.references Carmona, F., Rivas, R., Ocampo, D., Schirmbeck, J., Holzman, M. 2011. Sensores para la medición y validación de variables hidrológicas a escalas local y regional a partir del balance de energía. Aqua-LAC, Revista del programa hidrológico internacional para América Latina y el Caribe, 3, 26-36. es_ES
dc.description.references Carmona, F., Rivas, R., Caselles, V. 2013. Estimate of the alpha parameter in an oat crop under rain-fed conditions. Hydrological Processes, 27(19), 2834- 2839. https://doi.org/10.1002/hyp.9415 es_ES
dc.description.references Carmona, F., Rivas, R., Kruse, E. 2017. Estimating daily net radiation in the FAO Penman-Monteith method. Theoretical and Applied Climatology, 129(1-2), 89- 95. https://doi.org/10.1007/s00704-016-1761-6 es_ES
dc.description.references Carmona, F., Orte, P.F., Rivas, R., Wolfram, E., Kruse, E. 2017. Development and Analysis of a New Solar Radiation Atlas for Argentina from Ground-Based Measurements and CERES_SYN1deg data. Egyptian Journal of Remote Sensing and Space Science. (In press). https://doi.org/10.1016/j.ejrs.2017.11.003 es_ES
dc.description.references Degano, M.F. 2017. Evaluación del producto de evapotranspiración global MOD16 con medidas in situ en la región de la Pampa Húmeda, Argentina. Tesis de Maestría. Repositorio DigitalCIC. Facultad de Física, Universidad de Valencia. Disponible en https://digital.cic.gba.gob.ar/ handle/11746/7085 es_ES
dc.description.references Degano F., Rivas R., Sánchez Tomás J.M., Carmona F., Niclós R. 2018. Assessment of the Potential Evapotranspiration MODIS Product Using Ground Measurements in the Pampas. Proceedings of the 2018 IEEE ARGENCON conference. es_ES
dc.description.references Fisher J.B., Tu K.P., Baldocchi D.D. 2008. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUX- NET sites. Remote Sens. Environ., 112, 901-919. https://doi.org/10.1016/j.rse.2007.06.025 es_ES
dc.description.references Hashimoto, H., Dungan, J.L., White, M.A., Yang, F., Michaelis, A.R., Running, S.W., Nemani, R.R. 2008. Satellite-based estimation of surface vapor pressure deficits using MODIS land surface temperature data. Remote Sensing of Environment, 112(1), 142-155. https://doi.org/10.1016/j.rse.2007.04.016 es_ES
dc.description.references Jensen, M., Burman, R., Allen, R. 1990. Evapotranspiration and irrigation water requirements. Am Soc Civ Eng (ASCE) Manual 70, 332. es_ES
dc.description.references Jiang L., Islam S. 2001. Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resour. Res., 37, 329-340. https://doi.org/10.1029/2000WR900255 es_ES
dc.description.references Jiang, B., Liang, S., Ma, H., Zhang, X., Xiao, Z., Zhao, X., Jia, K., Yao, Y., Jia, A. 2016. GLASS daytime allwave net radiation product: Algorithm development and preliminary validation. Remote Sensing, 8(3), 222. https://doi.org/10.3390/rs8030222 es_ES
dc.description.references Kitoh, A., Kusunoki, S., Nakaegawa, T. 2011. Climate change projections over South America in the late 21st century with the 20 and 60 km mesh Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). Journal of Geophysical Research Atmospheres, 116(6), 1-21. https://doi.org/10.1029/2010JD014920 es_ES
dc.description.references Long D., Longuevergne L., Scanlon B.R. 2014. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res., 50, 1131-1151. https://doi.org/10.1002/2013WR014581 es_ES
dc.description.references Martínez, G., Gutiérrez, M.A., Messineo, P.G., Kaufmann, C.A., Rafuse, D.J. 2016. Subsistence strategies in Argentina during the late Pleistocene and early Holocene. Quaternary Science Reviews, 144, 51-65. https://doi.org/10.1016/j.quascirev.2016.05.014 es_ES
dc.description.references Miralles D.G., Holmes T.R.H., De Jeu R.A.M., Gash J.H., Meesters A.G.C.A., Dolman A.J. 2011. Global land-surface evaporation estimated from satellitebased observations. Hydrol. Earth Syst Sci., 15, 453-469. https://doi.org/10.5194/hess-15-453-2011 es_ES
dc.description.references Mu Q., Heinsch F.A., Zhao M., Running S.W. 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote. Sens. Environ., 111, 519-536. https://doi.org/10.1016/j.rse.2007.04.015 es_ES
dc.description.references Mu Q.Z., Zhao M.S., Running S.W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ, 115, 1781-1800. https://doi.org/10.1016/j.rse.2011.02.019 es_ES
dc.description.references Nishida K., Nemani R.R., Glassy JM, Running S.W. 2003. Development of an evapotranspiration index from aqua/MODIS for monitoring surface moisture status. IEEE Trans Geosci. Remote Sens., 41, 493- 501. https://doi.org/10.1109/TGRS.2003.811744 es_ES
dc.description.references Ocampo, D., Rivas, R. 2013. Estimación de la radiación neta diaria a partir de Modelos de Regresión Lineal Múltiple. Revista Chapingo, Serie Ciencias Forestales y del Ambiente, 19(2), 263-271. https://doi.org/10.5154/r.rchscfa.2012.04.031 es_ES
dc.description.references Penman, H.L. 1948. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 193(1032), 120-145. https://doi.org/10.1098/rspa.1948.0037 es_ES
dc.description.references Pereyra, F. 2003. Ecorregiones de la Argentina. SEGEMAR. ISSN 0328-2325. es_ES
dc.description.references Priestley, C.H.B., Taylor, R.J. 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2), 81-92. https://doi.org/10.1175/1520- 0493(1972)100%3C0081:OTAOSH%3E2.3.CO;2 es_ES
dc.description.references Rivas, R.E., Carmona, F. 2013. Evapotranspiration in the Pampean Region using field measurements and satellite data. Physics and Chemistry of the Earth, Parts A/B/C, 55-57, 27-34. https://doi.org/10.1016/j.pce.2010.12.002 es_ES
dc.description.references Rivas, R., Caselles, V. 2004. A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data. Remote Sensing of Environment, 93, 68-76. https://doi.org/10.1016/j.rse.2004.06.021 es_ES
dc.description.references Sánchez, J.M., Scavone, G., Caselles, V., Valor, E., Copertino, V.A., Telesca, V. 2008. Monitoring daily evapotranspiration at a regional scale from LandsatTM and ETM+ data: Application to the Basilicata region. Journal of Hydrology, 351(1-2), 58-70. https://doi.org/10.1016/j.jhydrol.2007.11.041 es_ES
dc.description.references Scian, B., Labraga, J.C., Reimers, W., Frumento, O. 2006. Characteristics of large-scale atmospheric circulation related to extreme monthly rainfall anomalies in the Pampa region, Argentina, under non-ENSO conditions. Theoretical and Applied Climatology, 85(1-2), 89-106. https://doi.org/10.1007/s00704-005-0182-8 es_ES
dc.description.references Smith, G.L., Priestley, K.J., Loeb, N.G., Wielicki, B.A., Charlock, T.P., Minnis, P., Doelling, D.R., Rutan, D.A. 2011. Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future. Advances in Space Research, 48(2), 254-263. https://doi.org/10.1016/j.asr.2011.03.009 es_ES
dc.description.references Soegaard, H., Boegh, E. 1995. Estimation of evapotranspiration from a millet crop in the Sahel combining sap flow, leaf area index and eddy correlation technique. Journal of Hydrology, 166(3-4), 265-282. https://doi.org/10.1016/0022-1694(94)05094-E es_ES
dc.description.references Tang Q.H., Peterson S., Cuenca R.H., Hagimoto Y., Lettenmaier D.P. 2009. Satellite-based nearreal-time estimation of irrigated crop water consumption. J. Geophys. Res. Atmos., 114, D05114. https://doi.org/10.1029/2008JD010854 es_ES
dc.description.references Wan Z., Zhang K., Xue X.W., Hong Z., Hong Y., Gourley J.J. 2015. Water balance based actual evapotranspi- ration reconstruction from ground and satellite obser- vations over the Conterminous United States. Water Resour. Res., 51, 6485-6499. https://doi.org/10.1002/2015WR017311 es_ES
dc.description.references Wang K.C., Wang P., Li Z.Q., Cribb M., Sparrow M. 2007. A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J. Geophys. Res. Atmos., 112, D15107. https://doi.org/10.1029/2006JD008351 es_ES
dc.description.references Zeng Z.Z., Piao S.L., Lin X., Yin G.D., Peng S.S., Ciais P., Myneni R.B. 2012. Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models. Environ. Res. Lett., 7, 014026, https://doi.org/10.1088/1748-9326/7/1/014026. es_ES
dc.description.references Zhang K., Kimball J.S., Mu Q., Jones L.A., Goetz S.J., Running S.W. 2009. Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J. Hydrol., 379, 92-110. https://doi.org/10.1016/j.jhydrol.2009.09.047 es_ES
dc.description.references Zhang, K., Kimball, J.S., Running, S.W. 2016. A review of remote sensing based actual evapotranspiration estimation. WIREs Water, 3, 834-853. https://doi.org/10.1002/wat2.1168 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem