Mostrar el registro sencillo del ítem
dc.contributor.author | Carmona, F. | es_ES |
dc.contributor.author | Holzman, M. | es_ES |
dc.contributor.author | Rivas, R. | es_ES |
dc.contributor.author | Degano, M.F. | es_ES |
dc.contributor.author | Kruse, E. | es_ES |
dc.contributor.author | Bayala, M. | es_ES |
dc.date.accessioned | 2018-07-10T07:07:57Z | |
dc.date.available | 2018-07-10T07:07:57Z | |
dc.date.issued | 2018-06-29 | |
dc.identifier.issn | 1133-0953 | |
dc.identifier.uri | http://hdl.handle.net/10251/105603 | |
dc.description.abstract | [EN] Evapotranspiration is the most important variable in the Pampas plain. Information provided by sensors onboard satellite missions allows represent the spatial and temporal variability of evapotranspiration, which cannot be achieved using only measurements of weather stations. In this work, the Priestley and Taylor (PT) and FAO Penman Monteith (FAO PM) equations were adapted to estimate the reference evapotranspiration, ET0 , using only CERES satellite products (SYN1 and CldTypHist). In order to evaluate the reference evapotranspiration from CERES, a comparison with in situ measurements was conducted. We used ET data provided by the Oficina de Riesgo Agropecuario, corresponding to 24 stations placed in the Pampean Region of Argentina (2001-2016). Results showed very good agreement between the estimates with CERES products and in situ values, with errors between ±0.8 and ±1.1 mm d–1 and r2 greater than 0.75 at daily scale, and errors between ±14 and ±19 mm month–1 and r2 greater than 0.9, at monthly scale better results were obtained with adapted model FAO PM than PT. Finally, ET0 monthly maps for the Pampean Region of Argentina were elaborated, which allowed knowing the temporal-spatial variation in the validation area. In conclusion, the methods presented here are a suitable alternative to estimate the reference evapotranspiration without requiring ground measurements. | es_ES |
dc.description.abstract | [ES] La evapotranspiración es la variable hidrológica de mayor relevancia en la llanura pampeana. La información provista por sensores a bordo de satélites permite representar la variabilidad espacio-temporal de la evapotranspiración, lo cual no es posible lograr utilizando únicamente datos de sitios puntuales de medida. En este trabajo se adaptaron las ecuaciones de Priestley y Taylor (PT) y FAO Penman-Monteith (FAO PM) para obtener la evapotranspiración del cultivo de referencia, ET0 , utilizando únicamente datos de los productos de satélite CERES (SYN1 y CldTypHist). Los resultados obtenidos con los datos CERES se compararon con valores de ET0 provistos por la Oficina de Riesgo Agropecuario de Argentina, a partir de información de 24 estaciones agro-meteorológicas distribuidas en la Región Pampeana de Argentina (2001-2016). Los resultados mostraron muy buena concordancia entre los valores generados con los métodos propuestos y aquellos obtenidos in situ, con errores de entre ±0,8 y ±1,1 mm d–1 y r2 superiores a 0,75 a escala diaria, y errores de entre ±14 y ±19 mm mes–1 y r2 superiores a 0,9, a escala mensual, siendo en general mejores los resultados con el método adaptado de FAO PM respecto al de PT. Finalmente, se elaboraron los mapas promedio mensual de la ET0 para la Región Pampeana de Argentina, los cuales permitieron conocer la variación espacio temporal en el área de validación. En conclusión, los métodos que aquí se presentan constituyen una buena alternativa para el cálculo de la evapotranspiración de referencia, sin necesidad de contar con medidas de terreno. | es_ES |
dc.description.sponsorship | El trabajo se realizó gracias a fondos otorga-dos por la Agencia Nacional de Promoción Científica y Tecnológica de Argentina, PICT 2016-1486- Estudio de la evapotranspiración en la llanura pampeana argentina a partir de datos de satélite (EVAPAMPAS), y el Consejo Nacional de Investigaciones Científicas y Técnicas. Los autores además desean agradecer a la Comisión de Investigaciones Científicas de Buenos Aires, la Universidad Nacional del Centro de la provincia de Buenos Aires, a la Oficina de Riesgo Agropecuario de Argentina, y al Atmospheric Science Data Center de la NASA Langley Research Center por proveer los datos CERES. Además, se agradece a los revisores anónimos que contribuyeron para mejorar el documento. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Revista de Teledetección | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | CERES | es_ES |
dc.subject | Teledetección | es_ES |
dc.subject | Evapotranspiración del cultivo de referencia | es_ES |
dc.subject | Remote sensing | es_ES |
dc.subject | Reference evapotranspiration | es_ES |
dc.title | Evaluación de dos modelos para la estimación de la evapotranspiración de referencia con datos CERES | es_ES |
dc.title.alternative | Evaluation of two models using CERES data for reference evapotranspiration estimation | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2018-07-09T07:16:00Z | |
dc.identifier.doi | 10.4995/raet.2018.9259 | |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT-2016-1486/AR/Estudio de la evapotranspiración en la llanura pampeana argentina a partir de datos de satélite (EVAPAMPAS)/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Carmona, F.; Holzman, M.; Rivas, R.; Degano, M.; Kruse, E.; Bayala, M. (2018). Evaluación de dos modelos para la estimación de la evapotranspiración de referencia con datos CERES. Revista de Teledetección. (51):87-98. https://doi.org/10.4995/raet.2018.9259 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/raet.2018.9259 | es_ES |
dc.description.upvformatpinicio | 87 | es_ES |
dc.description.upvformatpfin | 98 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 51 | |
dc.identifier.eissn | 1988-8740 | |
dc.contributor.funder | Agencia Nacional de Promoción Científica y Tecnológica, Argentina | |
dc.contributor.funder | Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina | |
dc.description.references | Aliaga, V.S., Ferrelli, F., Piccolo, M.C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37, 1237-1247. https://doi.org/10.1002/joc.5079 | es_ES |
dc.description.references | Allen R.G., Tasumi M., Trezza R. 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - model. J. Irrig. Drain. Eng. ASCE, 133, 380-394. https://doi. org/10.1061/(ASCE)0733-9437(2007)133:4(380) | es_ES |
dc.description.references | Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 1998. FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration. (F.W. Resources, Ed.), Irrigation and Drainage. Fao. Retrieved from http://www.kimberly.uidaho.edu/water/fao56/ fao56.pdf | es_ES |
dc.description.references | Anderson M.C., Norman J.M., Diak G.R., Kustas W.P., Mecikalski J.R. 1997. A twosource time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens Environ, 60, 195-216. https://doi.org/10.1016/S0034-4257(96)00215-5 | es_ES |
dc.description.references | ASCE - EWRI. 2005. The ASCE standardized reference evapotranspiration equation. ASCE-EWRI Standardization of Reference Evapotranspiration Task Comm. Report, January, 2005. http:// www.kimberly.uidaho.edu/water/asceewri/ ascestzdetmain2005.pdf. | es_ES |
dc.description.references | Bastiaanssen W.G.M., Menenti M., Feddes R.A., Holtslag A.A.M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol, 212-213, 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4 | es_ES |
dc.description.references | Carmona, F., Rivas, R., Ocampo, D., Schirmbeck, J., Holzman, M. 2011. Sensores para la medición y validación de variables hidrológicas a escalas local y regional a partir del balance de energía. Aqua-LAC, Revista del programa hidrológico internacional para América Latina y el Caribe, 3, 26-36. | es_ES |
dc.description.references | Carmona, F., Rivas, R., Caselles, V. 2013. Estimate of the alpha parameter in an oat crop under rain-fed conditions. Hydrological Processes, 27(19), 2834- 2839. https://doi.org/10.1002/hyp.9415 | es_ES |
dc.description.references | Carmona, F., Rivas, R., Kruse, E. 2017. Estimating daily net radiation in the FAO Penman-Monteith method. Theoretical and Applied Climatology, 129(1-2), 89- 95. https://doi.org/10.1007/s00704-016-1761-6 | es_ES |
dc.description.references | Carmona, F., Orte, P.F., Rivas, R., Wolfram, E., Kruse, E. 2017. Development and Analysis of a New Solar Radiation Atlas for Argentina from Ground-Based Measurements and CERES_SYN1deg data. Egyptian Journal of Remote Sensing and Space Science. (In press). https://doi.org/10.1016/j.ejrs.2017.11.003 | es_ES |
dc.description.references | Degano, M.F. 2017. Evaluación del producto de evapotranspiración global MOD16 con medidas in situ en la región de la Pampa Húmeda, Argentina. Tesis de Maestría. Repositorio DigitalCIC. Facultad de Física, Universidad de Valencia. Disponible en https://digital.cic.gba.gob.ar/ handle/11746/7085 | es_ES |
dc.description.references | Degano F., Rivas R., Sánchez Tomás J.M., Carmona F., Niclós R. 2018. Assessment of the Potential Evapotranspiration MODIS Product Using Ground Measurements in the Pampas. Proceedings of the 2018 IEEE ARGENCON conference. | es_ES |
dc.description.references | Fisher J.B., Tu K.P., Baldocchi D.D. 2008. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUX- NET sites. Remote Sens. Environ., 112, 901-919. https://doi.org/10.1016/j.rse.2007.06.025 | es_ES |
dc.description.references | Hashimoto, H., Dungan, J.L., White, M.A., Yang, F., Michaelis, A.R., Running, S.W., Nemani, R.R. 2008. Satellite-based estimation of surface vapor pressure deficits using MODIS land surface temperature data. Remote Sensing of Environment, 112(1), 142-155. https://doi.org/10.1016/j.rse.2007.04.016 | es_ES |
dc.description.references | Jensen, M., Burman, R., Allen, R. 1990. Evapotranspiration and irrigation water requirements. Am Soc Civ Eng (ASCE) Manual 70, 332. | es_ES |
dc.description.references | Jiang L., Islam S. 2001. Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resour. Res., 37, 329-340. https://doi.org/10.1029/2000WR900255 | es_ES |
dc.description.references | Jiang, B., Liang, S., Ma, H., Zhang, X., Xiao, Z., Zhao, X., Jia, K., Yao, Y., Jia, A. 2016. GLASS daytime allwave net radiation product: Algorithm development and preliminary validation. Remote Sensing, 8(3), 222. https://doi.org/10.3390/rs8030222 | es_ES |
dc.description.references | Kitoh, A., Kusunoki, S., Nakaegawa, T. 2011. Climate change projections over South America in the late 21st century with the 20 and 60 km mesh Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). Journal of Geophysical Research Atmospheres, 116(6), 1-21. https://doi.org/10.1029/2010JD014920 | es_ES |
dc.description.references | Long D., Longuevergne L., Scanlon B.R. 2014. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res., 50, 1131-1151. https://doi.org/10.1002/2013WR014581 | es_ES |
dc.description.references | Martínez, G., Gutiérrez, M.A., Messineo, P.G., Kaufmann, C.A., Rafuse, D.J. 2016. Subsistence strategies in Argentina during the late Pleistocene and early Holocene. Quaternary Science Reviews, 144, 51-65. https://doi.org/10.1016/j.quascirev.2016.05.014 | es_ES |
dc.description.references | Miralles D.G., Holmes T.R.H., De Jeu R.A.M., Gash J.H., Meesters A.G.C.A., Dolman A.J. 2011. Global land-surface evaporation estimated from satellitebased observations. Hydrol. Earth Syst Sci., 15, 453-469. https://doi.org/10.5194/hess-15-453-2011 | es_ES |
dc.description.references | Mu Q., Heinsch F.A., Zhao M., Running S.W. 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote. Sens. Environ., 111, 519-536. https://doi.org/10.1016/j.rse.2007.04.015 | es_ES |
dc.description.references | Mu Q.Z., Zhao M.S., Running S.W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ, 115, 1781-1800. https://doi.org/10.1016/j.rse.2011.02.019 | es_ES |
dc.description.references | Nishida K., Nemani R.R., Glassy JM, Running S.W. 2003. Development of an evapotranspiration index from aqua/MODIS for monitoring surface moisture status. IEEE Trans Geosci. Remote Sens., 41, 493- 501. https://doi.org/10.1109/TGRS.2003.811744 | es_ES |
dc.description.references | Ocampo, D., Rivas, R. 2013. Estimación de la radiación neta diaria a partir de Modelos de Regresión Lineal Múltiple. Revista Chapingo, Serie Ciencias Forestales y del Ambiente, 19(2), 263-271. https://doi.org/10.5154/r.rchscfa.2012.04.031 | es_ES |
dc.description.references | Penman, H.L. 1948. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 193(1032), 120-145. https://doi.org/10.1098/rspa.1948.0037 | es_ES |
dc.description.references | Pereyra, F. 2003. Ecorregiones de la Argentina. SEGEMAR. ISSN 0328-2325. | es_ES |
dc.description.references | Priestley, C.H.B., Taylor, R.J. 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2), 81-92. https://doi.org/10.1175/1520- 0493(1972)100%3C0081:OTAOSH%3E2.3.CO;2 | es_ES |
dc.description.references | Rivas, R.E., Carmona, F. 2013. Evapotranspiration in the Pampean Region using field measurements and satellite data. Physics and Chemistry of the Earth, Parts A/B/C, 55-57, 27-34. https://doi.org/10.1016/j.pce.2010.12.002 | es_ES |
dc.description.references | Rivas, R., Caselles, V. 2004. A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data. Remote Sensing of Environment, 93, 68-76. https://doi.org/10.1016/j.rse.2004.06.021 | es_ES |
dc.description.references | Sánchez, J.M., Scavone, G., Caselles, V., Valor, E., Copertino, V.A., Telesca, V. 2008. Monitoring daily evapotranspiration at a regional scale from LandsatTM and ETM+ data: Application to the Basilicata region. Journal of Hydrology, 351(1-2), 58-70. https://doi.org/10.1016/j.jhydrol.2007.11.041 | es_ES |
dc.description.references | Scian, B., Labraga, J.C., Reimers, W., Frumento, O. 2006. Characteristics of large-scale atmospheric circulation related to extreme monthly rainfall anomalies in the Pampa region, Argentina, under non-ENSO conditions. Theoretical and Applied Climatology, 85(1-2), 89-106. https://doi.org/10.1007/s00704-005-0182-8 | es_ES |
dc.description.references | Smith, G.L., Priestley, K.J., Loeb, N.G., Wielicki, B.A., Charlock, T.P., Minnis, P., Doelling, D.R., Rutan, D.A. 2011. Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future. Advances in Space Research, 48(2), 254-263. https://doi.org/10.1016/j.asr.2011.03.009 | es_ES |
dc.description.references | Soegaard, H., Boegh, E. 1995. Estimation of evapotranspiration from a millet crop in the Sahel combining sap flow, leaf area index and eddy correlation technique. Journal of Hydrology, 166(3-4), 265-282. https://doi.org/10.1016/0022-1694(94)05094-E | es_ES |
dc.description.references | Tang Q.H., Peterson S., Cuenca R.H., Hagimoto Y., Lettenmaier D.P. 2009. Satellite-based nearreal-time estimation of irrigated crop water consumption. J. Geophys. Res. Atmos., 114, D05114. https://doi.org/10.1029/2008JD010854 | es_ES |
dc.description.references | Wan Z., Zhang K., Xue X.W., Hong Z., Hong Y., Gourley J.J. 2015. Water balance based actual evapotranspi- ration reconstruction from ground and satellite obser- vations over the Conterminous United States. Water Resour. Res., 51, 6485-6499. https://doi.org/10.1002/2015WR017311 | es_ES |
dc.description.references | Wang K.C., Wang P., Li Z.Q., Cribb M., Sparrow M. 2007. A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J. Geophys. Res. Atmos., 112, D15107. https://doi.org/10.1029/2006JD008351 | es_ES |
dc.description.references | Zeng Z.Z., Piao S.L., Lin X., Yin G.D., Peng S.S., Ciais P., Myneni R.B. 2012. Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models. Environ. Res. Lett., 7, 014026, https://doi.org/10.1088/1748-9326/7/1/014026. | es_ES |
dc.description.references | Zhang K., Kimball J.S., Mu Q., Jones L.A., Goetz S.J., Running S.W. 2009. Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J. Hydrol., 379, 92-110. https://doi.org/10.1016/j.jhydrol.2009.09.047 | es_ES |
dc.description.references | Zhang, K., Kimball, J.S., Running, S.W. 2016. A review of remote sensing based actual evapotranspiration estimation. WIREs Water, 3, 834-853. https://doi.org/10.1002/wat2.1168 | es_ES |