- -

Estimación de la cosecha de trigo en Andalucía usando series temporales de MERIS Terrestrial Chlorophyll Index (MTCI)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estimación de la cosecha de trigo en Andalucía usando series temporales de MERIS Terrestrial Chlorophyll Index (MTCI)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Egea-Cobrero, V. es_ES
dc.contributor.author Rodriguez-Galiano, V. es_ES
dc.contributor.author Sánchez-Rodríguez, E. es_ES
dc.contributor.author García-Pérez, M.A. es_ES
dc.date.accessioned 2018-07-10T07:15:27Z
dc.date.available 2018-07-10T07:15:27Z
dc.date.issued 2018-06-29
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/105604
dc.description.abstract [EN] There is a relationship between net primary production of wheat and vegetation indices obtained from satellite imaging. Most wheat production studies use the Normalised Difference Vegetation Index (NDVI) to estimate the production and yield of wheat and other crops. On the one hand, few studies use the MERIS Terrestrial Chlorophyll Index (MTCI) to determine crop yield and production on a regional level. This is possibly due to a lack of continuity of MERIS. On the other hand, the emergence of Sentinel 2 open new possibilities for the research and application of MTCI. This study has built two empirical models to estimate wheat production and yield in Andalusia. To this end, the study used the complete times series (weekly images from 2006–2011) of the MTCI vegetation index from the Medium Resolution Imaging Spectrometer (MERIS) sensor associated with the Andalusian yearbook for agricultural and fishing statistics (AEAP—Anuario de estadísticas agrarias y pesqueras de Andalucía). In order to build these models, the optimal development period for the plant needed to be identified, as did the time-based aggregation of MTCI values using said optimal period as a reference, and relation with the index, with direct observations of production and yield through spatial aggregation using coverage from the Geographic Information System for Agricultural Parcels (SIGPAC—Sistema de información geográfica de parcelas agrícolas) and requests for common agricultural policy (CAP) assistance. The obtained results indicate a significant association between the MTCI index and the production and yield data collected by AEAP at the 95% confidence level (R2 =0.81 and R2 =0.57, respectively). es_ES
dc.description.abstract [ES] Existe una relación entre la producción primaria neta del trigo y los índices de vegetación obtenidos de imágenes de satélite. Con frecuencia se utiliza el NDVI (Normalized Difference Vegetation Index) para la estimación de producción y rendimiento de trigo y otros cultivos. Sin embargo, hay pocas investigaciones que utilicen el índice MTCI (MERIS Terrestrial Chlorophyll Index) para conocer el rendimiento y la producción de los cultivos a una escala regional posiblemente debido a la falta de continuidad del sensor MERIS. No obstante, la posibilidad del cálculo de MTCI a partir de Sentinel 2 abre nuevas oportunidades para su aplicación e investigación. En esta investigación se han generado dos modelos empíricos de estimación de producción y rendimiento de trigo en Andalucía. Para ello, se ha empleado la serie temporal completa (imágenes semanales de 2006 a 2011) del índice de vegetación MTCI del sensor satelital MERIS (Medium Resolution Imaging Spectrometer) asociada a los datos de producción y rendimiento del Anuario de estadísticas agrarias y pesqueras de Andalucía (AEAP). Para la creación de estos modelos ha sido necesaria la identificación del periodo óptimo del desarrollo de la planta, la agregación temporal de los valores MTCI usando ese momento óptimo como referencia, relacionar ese índice con observaciones directas de producción y rendimiento a través de agregaciones espaciales mediante la utilización de coberturas SIGPAC y las solicitudes de ayudas PAC, caracterizar la variación del índice en función del año de cultivo y relacionarlo con los datos estadísticos. Los resultados obtenidos indican una correlación estadísticamente significativa (p-valor < 0,05) entre el índice MTCI y los datos de producción y rendimiento recogidos por AEAP (R2=0,81 y 0,57, respectivamente). es_ES
dc.description.sponsorship Agradecemos la financiación obtenida de MINECO (Proyectos BIA2013-43462-P, CSO2014-51994-P) y de la Junta de Andalucía (Grupo Investigación RNM177). es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Revista de Teledetección
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Teledetección es_ES
dc.subject MTCI es_ES
dc.subject Modelo es_ES
dc.subject Trigo es_ES
dc.subject Cosecha es_ES
dc.subject Series temporales es_ES
dc.subject Remote sensing es_ES
dc.subject Model es_ES
dc.subject Wheat es_ES
dc.subject Yield es_ES
dc.subject Time series es_ES
dc.title Estimación de la cosecha de trigo en Andalucía usando series temporales de MERIS Terrestrial Chlorophyll Index (MTCI) es_ES
dc.title.alternative Wheat yield prediction in Andalucía using MERIS Terrestrial Chlorophyll Index (MTCI) time series es_ES
dc.type Artículo es_ES
dc.date.updated 2018-07-09T07:15:49Z
dc.identifier.doi 10.4995/raet.2018.8891
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2013-43462-P/ES/SIMULACIONES GEOMATICAS PARA MODELIZAR DINAMICAS AMBIENTALES II. HORIZONTE 2020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CSO2014-51994-P/ES/ESPACIALIZACION Y DIFUSION WEB A ESCALAS DE DETALLE DE INDICADORES DE VULNERABILIDAD DE LAS PLAYAS DE ANDALUCIA COMO RECURSO TURISTICO. ANTE LOS PROCESOS EROSIVOS./ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Egea-Cobrero, V.; Rodriguez-Galiano, V.; Sánchez-Rodríguez, E.; García-Pérez, M. (2018). Estimación de la cosecha de trigo en Andalucía usando series temporales de MERIS Terrestrial Chlorophyll Index (MTCI). Revista de Teledetección. (51):99-112. https://doi.org/10.4995/raet.2018.8891 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2018.8891 es_ES
dc.description.upvformatpinicio 99 es_ES
dc.description.upvformatpfin 112 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 51
dc.identifier.eissn 1988-8740
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.description.references Ahmed, B.M., Tanakamaru, H., Tada, A. 2010. Application of remote sensing for estimating crop water requirements, yield and water productivity of wheat in the Gezira Scheme. International Journal of Remote Sensing, 31(16), 4281-4294. https://doi.org/10.1080/01431160903246733 es_ES
dc.description.references Arévalo-Barroso, A. 1992. Atlas Nacional de España. Sección II. Grupo 9. Recuperado el 5 de noviembre de 2016, a partir de http://www.ign.es/ane/ane1986-2008/ es_ES
dc.description.references Asseng, S., Ewert, F., Martre, P., Rötter, R.P., Lobell, D.B., Cammarano, D., … Zhu, Y. 2014. Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143-147. https://doi.org/10.1038/nclimate2470 es_ES
dc.description.references Atanasova, N., Todorovski, L., Džeroski, S., Kompare, B. 2008. Application of automated model discovery from data and expert knowledge to a real-world domain: Lake Glumsø. Ecological Modelling, 212(1-2), 92- 98. https://doi.org/10.1016/j.ecolmodel.2007.10.032 es_ES
dc.description.references Atzberger, C. 2013. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sensing, 5(2), 949-981. https://doi.org/10.3390/rs5020949 es_ES
dc.description.references Becker-Reshef, I., Justice, C., Sullivan, M., Vermote, E., Tucker, C., Anyamba, A., … Doorn, B. 2010. Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project. Remote Sensing, 2(6), 1589-1609. https://doi.org/10.3390/rs2061589 es_ES
dc.description.references Boissard, P., Guérif, M., Pointel, J.G., Guinot, J.P. 1989. Application of SPOT data to wheat yield estimation. Advances in Space Research, 9(1), 143-154. https://doi.org/10.1016/0273-1177(89)90479-1 es_ES
dc.description.references Boken, V.K., Shaykewich, C.F. 2002. Improving an operational wheat yield model using phenological phase-based Normalized Difference Vegetation Index. International Journal of Remote Sensing, 23(20), 4155-4168. https://doi.org/10.1080/014311602320567955 es_ES
dc.description.references CAPDER. 2012. Seguimiento de los mercados de cereales y oleaginosas. Consejería de Agricultura, Pesca y Desarrollo Rural (CAPDER). Secretaría General Técnica. Servicio de Publicaciones y Divulgación. Junta de Andalucía. es_ES
dc.description.references CAPDER. 2015. Anuario de estadísticas agrarias y pesqueras de Andalucía. Recuperado a partir de es_ES
dc.description.references http://www.juntadeandalucia.es/organismos/agriculturapescaydesarrollorural/consejeria/sobreconsejeria/estadisticas/paginas/agrarias-anuario. html [Último acceso: junio de 2018]. es_ES
dc.description.references Chahbi, A., Zribi, M., Lili-Chabaane, Z., Duchemin, B., Shabou, M., Mougenot, B., Boulet, G. 2014. Estimation of the dynamics and yields of cereals in a semi-arid area using remote sensing and the SAFY growth model. International Journal of Remote Sensing, 35(3), 1004-1028. https://doi.org/10.1080/ 01431161.2013.875629 es_ES
dc.description.references Curtis, T., Halford, N. G. 2014. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Annals of Applied Biology, 164(3), 354-372. https://doi.org/10.1111/aab.12108 es_ES
dc.description.references Dash, J., Curran, P. 2007. Relationship between the MERIS vegetation indices and crop yield for the state of South Dakota, USA. Proc. Envisat Symposium. es_ES
dc.description.references Dash, J., Jeganathan, C., Atkinson, P.M. 2010. The use of MERIS Terrestrial Chlorophyll Index to study spatio-temporal variation in vegetation phenology over India. Remote Sensing of Environment, 114(7), 1388-1402. https://doi.org/10.1016/j. rse.2010.01.021 es_ES
dc.description.references Dempewolf, J., Adusei, B., Becker-Reshef, I., Hansen, M., Potapov, P., Khan, A., Barker, B. 2014. Wheat yield forecasting for Punjab Province from vegetation index time series and historic crop statistics. Remote Sensing, 6(10), 9653-9675. https://doi.org/10.3390/rs6109653 es_ES
dc.description.references Dente, L., Satalino, G., Mattia, F., Rinaldi, M. 2008. Assimilation of leaf area index derived from ASAR and MERIS data into CERESWheat model to map wheat yield. Remote Sensing of Environment, 112(4), 1395-1407. https://doi.org/10.1016/j.rse.2007.05.023 es_ES
dc.description.references Duncan, J.M.A., Dash, J., Atkinson, P.M. 2015. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing. Global change biology, 21(4), 1541-51. https://doi.org/10.1111/gcb.12660 es_ES
dc.description.references FAOSTAT. 2013. Productos agrícolas. Recuperado 17 de agosto de 2016, a partir de http://ec.europa.eu/eurostat/statistics-explained/index.php/Agricultural_products/es#Fuente_de_los_datos_de_las_tablas_y_los_gr.C3.A1ficos_.28MS_Excel.29 es_ES
dc.description.references Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., … Zaks, D.P.M. 2011. Solutions for a cultivated planet. Nature, 478(7369), 337-342. https://doi.org/10.1038/ nature10452 es_ES
dc.description.references Fontana, D.C., Potgieter, A.B., Apan, A. 2007. Assessing the relationship between shire winter crop yield and seasonal variability of the MODIS NDVI and EVI images. Applied GIS, 3(7). es_ES
dc.description.references Huang, J., Sedano, F., Huang, Y., Ma, H., Li, X., Liang, S., … Wu, W. 2016. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agricultural and Forest Meteorology, 216, 188-202. https://doi.org/10.1016/j.agrformet.2015.10.013 es_ES
dc.description.references Huang, J., Tian, L., Liang, S., Ma, H., Becker-Reshef, I., Huang, Y., … Wu, W. 2015. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agricultural and Forest Meteorology, 204, 106-121. https://doi. org/10.1016/j.agrformet.2015.02.001 es_ES
dc.description.references Huang, Y., Zhu, Y., Li, W. L., Cao, W. X., & Tian, Y. C. 2013. Assimilating remotely sensed information with the wheatgrow model based on the ensemble square root filter for improving regional wheat yield forecasts. Plant Production Science, 16(4), 352-364. https://doi.org/10.1626/pps.16.352 es_ES
dc.description.references ITACyL, AEMET, Consejería de Agricultura y Ganadería de la Junta de Castilla y León. 2016. Boletín de predicción de cosechas de Castilla y León. Recuperado 25 de octubre de 2016, a partir de https://cosechas.itacyl.es/es/inicio es_ES
dc.description.references Jégo, G., Pattey, E., Liu, J. 2012. Using Leaf Area Index, retrieved from optical imagery, in the STICS crop model for predicting yield and biomass of field crops. Field Crops Research, 131, 63-74. https://doi. org/10.1016/j.fcr.2012.02.012 es_ES
dc.description.references Johnson, M.D., Hsieh, W.W., Cannon, A.J., Davidson, A., Bédard, F. 2016. Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agricultural and Forest Meteorology, 218-219, 74-84. https://doi.org/10.1016/j.agrformet.2015.11.003 es_ES
dc.description.references Kouadio, L., Duveiller, G., Djaby, B., El Jarroudi, M., Defourny, P., Tychon, B. 2012. Estimating regional wheat yield from the shape of decreasing curves of green area index temporal profiles retrieved from MODIS data. International Journal of Applied Earth Observation and Geoinformation, 18(1), 111- 118. https://doi.org/10.1016/j.jag.2012.01.009 es_ES
dc.description.references Kowalik, W., Dabrowska-Zielinska, K., Meroni, M., Raczka, T.U., de Wit, A. 2014. Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries. International Journal of Applied Earth Observation and Geoinformation, 32(1), 228-239. https://doi.org/10.1016/j.jag.2014.03.011 es_ES
dc.description.references Kumar, M. 2016. Impact of climate change on crop yield and role of model for achieving food security. Environmental Monitoring and Assessment, 188(8), 1-14. https://doi.org/10.1007/s10661-016-5472-3 es_ES
dc.description.references Lobell, D.B., Schlenker, W., Costa-Roberts, J. 2011. Climate trends and global crop production since 1980. Science, 333(6042), 616-20. https://doi.org/10.1126/science.1204531 es_ES
dc.description.references MAGRAMA. 2015. Encuesta sobre Superficies y Rendimientos Cultivos (ESYRCE) de 2004 a 2015. Recuperado a partir de http://www.magrama. gob.es/es/estadistica/temas/estadisticas-agrarias/ agricultura/esyrce/resultados-de-anos-anteriores/ default.aspx es_ES
dc.description.references Mika, J., Kerényi, J., Rimóczi-Paál, A., Merza, Á., Szinell, C., Csiszár, I. 2002. On correlation of maize and wheat yield with NDVI: Example of Hungary (1985-1998). Advances in Space Research, 30(11), 2399-2404. https://doi.org/10.1016/S0273- 1177(02)80288-5 es_ES
dc.description.references Padilla, F.L.M., Maas, S.J., González-Dugo, M.P., Mansilla, F., Rajan, N., Gavilán, P., Domínguez, J. 2012. Monitoring regional wheat yield in Southern Spain using the GRAMI model and satellite imagery. Field Crops Research, 130, 145-154. https://doi.org/10.1016/j.fcr.2012.02.025 es_ES
dc.description.references Rawson, H.M., Macpherson, H.G. 2001. Trigo regado: manejo del cultivo. FAO. es_ES
dc.description.references Reeves, M.C., Zhao, M., Running, S.W. 2005. Usefulness and limits on MODIS GPP for estimating wheat yield. International Journal of Remote Sensing, 26(7), 1403-1421. http://doi.org/10.1080/ 01431160512331326567 es_ES
dc.description.references Rembold, F., Atzberger, C., Savin, I., Rojas, O. 2013. Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection. Remote Sensing, 5(4), 1704-1733. https://doi.org/10.3390/rs5041704 es_ES
dc.description.references Ren, J., Chen, Z., Zhou, Q., Tang, H. 2008. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. International Journal of Applied Earth Observation and Geoinformation, 10(4), 403- 413. https://doi.org/10.1016/j.jag.2007.11.003 es_ES
dc.description.references Salazar, L., Kogan, F., Roytman, L. 2007. Use of remote sensing data for estimation of winter wheat yield in the United States. International Journal of Remote Sensing, 28(17), 3795-3811. https://doi.org/10.1080/01431160601050395 es_ES
dc.description.references Tadesse, T., Senay, G.B., Berhan, G., Regassa, T., Beyene, S. 2015. Evaluating a satellitebased seasonal evapotranspiration product and identifying its relationship with other satellitederived products and crop yield: A case study for Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 40, 39-54. http://doi.org/10.1016/j.jag.2015.03.006 es_ES
dc.description.references Vazifedoust, M., van Dam, J.C., Bastiaanssen, W.G. M., Feddes, R.A. 2009. Assimilation of satellite data into agrohydrological models to improve crop yield forecasts. International Journal of Remote Sensing, 30(10), 2523-2545. https://doi.org/10.1080/01431160802552769 es_ES
dc.description.references Wall, L., Larocque, D., Léger, P.M. 2008. The early explanatory power of NDVI in crop yield modelling. International Journal of Remote Sensing, 29(8), 2211-2225. https://doi.org/ 10.1080/01431160701395252 es_ES
dc.description.references Wu, C., Niu, Z., Tang, Q., Huang, W., Rivard, B., Feng, J. 2009. Remote estimation of gross primary production in wheat using chlorophyllrelated vegetation indices. Agricultural and Forest Meteorology, 149(6), 1015-1021. https://doi.org/10.1016/j.agrformet.2008.12.007 es_ES
dc.description.references Zhang, S., Liu, L. 2014. The potential of the MERIS Terrestrial Chlorophyll Index for crop yield prediction. Remote Sensing Letters, 5(8), 733-742. https://doi.org/10.1080/2150704X.2014.963734 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem