- -

Modelos 3D derivados de fotogrametría terrestre para la estimación de variables de inventario forestal

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelos 3D derivados de fotogrametría terrestre para la estimación de variables de inventario forestal

Mostrar el registro completo del ítem

De Eugenio, A.; Fernández-Landa, A.; Merino-De-Miguel, S. (2018). Modelos 3D derivados de fotogrametría terrestre para la estimación de variables de inventario forestal. Revista de Teledetección. (51):113-124. https://doi.org/10.4995/raet.2018.9174

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105605

Ficheros en el ítem

Metadatos del ítem

Título: Modelos 3D derivados de fotogrametría terrestre para la estimación de variables de inventario forestal
Otro titulo: 3D models from terrestrial photogrammetry in the estimation of forest inventory variables
Autor: de Eugenio, A. Fernández-Landa, A. Merino-de-Miguel, S.
Fecha difusión:
Resumen:
[EN] The management of forest resources should be based on reliable measurements of individual standing trees. At the beginning, these measurements allow us to estimate equations and models, which in turn are used to be ...[+]


[ES] La gestión eficiente de las masas forestales necesita de la medición de árboles individuales de manera precisa. A partir de dichas mediciones se elaboran ecuaciones y modelos que posteriormente pueden aplicarse a ...[+]
Palabras clave: Árbol , Fotogrametría , Diámetro , Cubicación , Volumen maderable , Tree , Photogrammetry , Diameter , Volume measurement , Timber volume
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista de Teledetección. (issn: 1133-0953 ) (eissn: 1988-8740 )
DOI: 10.4995/raet.2018.9174
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/raet.2018.9174
Tipo: Artículo

References

Astrup, R., Ducey, M.J., Granhus, A., Ritter, T., Von Lüpke, N. 2014. Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode Canadian Journal of Forest Research, 44(6), 666-676. https://doi.org/10.1139/cjfr-2013-0535

Balvanera, P. 2012. Los servicios ecosistémicos que ofrecen los bosques tropicales. Ecosistemas, 21(1- 2), 136-147.

Chirici, G., McRoberts, R.E., Winter, S., Bertini, R., Brändli, U.B., Alberdi-Asensio, I., Bastrup-Birk, A., Rondeux, J., Barsoum, N., Marchetti, M. 2012. National Forest Inventory Contributions to Forest Biodiversity Monitoring. Forest Science, 58(1), 257-268. https://doi.org/10.5849/forsci.12-003 [+]
Astrup, R., Ducey, M.J., Granhus, A., Ritter, T., Von Lüpke, N. 2014. Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode Canadian Journal of Forest Research, 44(6), 666-676. https://doi.org/10.1139/cjfr-2013-0535

Balvanera, P. 2012. Los servicios ecosistémicos que ofrecen los bosques tropicales. Ecosistemas, 21(1- 2), 136-147.

Chirici, G., McRoberts, R.E., Winter, S., Bertini, R., Brändli, U.B., Alberdi-Asensio, I., Bastrup-Birk, A., Rondeux, J., Barsoum, N., Marchetti, M. 2012. National Forest Inventory Contributions to Forest Biodiversity Monitoring. Forest Science, 58(1), 257-268. https://doi.org/10.5849/forsci.12-003

Cunliffe, A.M., Brazier, R.E., Anderson, K. 2016. Ultra-fine grain landscape-scale quatification of dryland vegetation structure with droneacquired structure-from-motion photogrammetry. Remote Sensing of Environment, 183, 129-143. https://doi.org/10.1016/j.rse.2016.05.019

De Araujo-Barbosa, C.C., Atkinson, P.M., Dearing, J.A. 2015. Remote sensing of ecosystem services: A systematic review. Ecological Indicators, 52, 430- 443. https://doi.org/10.1016/j.ecolind.2015.01.007

Diéguez-Aranda, U., Barrio, M., Castedo, F., RuizGonzález, A.D., Álvarez-Taboada, M.F., ÁlvarezGonzález, J.G., Rojo, A. 2003. Dendrometría. Madrid: Editorial Mundi-Prensa y Fundación Conde del Valle de Salazar.

European Environment Agency. European Environment Agency. 20 de diciembre de 2017, https://www. eea.europa.eu/data-and-maps/indicators/forest-firedanger-2/assessment

Fernandes, P., Luz, A., Loureiro, C., Ferreira-Godinho, P., Botelho, H. 2006. Fuel modelling and fire hazard assessment based on data from the Portuguese National Forest Inventory. Forest Ecology and Management, 234, supplement, S229.

Fridman, J., Holm, S., Nilsson, M., Nilsson, P., Ringvall, A.H., Stahl, G. 2014. Adapting National Forest Inventories to changing requierements - the case of the Swedish National Forest Inventory at the turn of the 20th century. Silva Fennica, 48(3), article id 1095. https://doi.org/10.14214/sf.1095

Hyyppä, J., Hyyppä, H., Leckie, D., Gougeon, F., Yu, X., Maltamo, M. 2008. Review of methods of smallfootprint airborne laser scanning for extracting forest inventory data in boreal forests. International Journal of Remote Sensing, 29(5), 1339-1366. https://doi.org/10.1080/01431160701736489

Liang, X., Hyyppä, J. 2013. Automatic Stem Mapping by Merging Several Terrestrial Laser Scans at the Feature and Decision Levels. Sensors, 13, 1614- 1634. https://doi.org/10.3390/s130201614

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., Kaartinen, H., Jaakkola, A., Guan, F., Holopainen, M. 2016. Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 63-77. https://doi.org/10.1016/j.isprsjprs.2016.01.006

Manín Castro, G., Barrio Anta, M., Díaz-Maroto, I.J. 2001. Tarifa de cubicación con clasificación de productos para Quercus robur L. en el norte de la provincia de Lugo. In: Proceedings of III Congreso Forestal Español, Granada, Spain, 25-28 September.

MAPAMA. Mapa Forestal de España. En Banco de Datos de la Naturaleza. 20 de diciembre de 2017, https://www.mapama.gob.es. Mikita, T., Janta, P., Surový, P. 2016. Forest Stand Inventory Based on Combined Aerial and Terrestrial Close-Range Photogrammetry. Forests, 7(8), 165, https://doi.org/10.3390/f7080165

Olofsson, K., Holmgren, J., Olsson, H. 2014. Tree Stem and Height Measurements using Terrestrial Laser Scanning and the RANSAC Algorithm. Remote Sensing, 6(5), 4323-4344. https://doi.org/10.3390/rs6054323

Rodríguez, F., Fernández, A. 2009. Herramientas de cubicación sin necesidad de apeo de árboles. Montes, 98, 83-99.

Vierling, L.A., Xu, Y., Eitel, J.U., Oldow, J.S. 2013. Shrub characterization using terrestrial laser scanning and implications for airborne LiDAR assessment. Canadian Journal of Remote Sensing, 38(6), 709-722. https://doi.org/10.5589/m12-057

Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., Vopěnka, P. 2016. Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests, 7(3), 62. https://doi.org/10.3390/f7030062

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M. 2012. 'Structure-fromMotion' photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph. 2012.08.021

Wu, C. VisualSFM. A visual Structure from Motion System. 15 de diciembre de 2017, http://ccwu.me/vsfm.

Wulder, M. 1998. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Progress in Physical Geography, 22(4), 449-476. https://doi.org/10.1177/030913339802200402

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem