Mostrar el registro sencillo del ítem
dc.contributor.author | Marín Mateos-Aparicio, José | es_ES |
dc.contributor.author | Mas Marí, José | es_ES |
dc.contributor.author | Guerrero-Flores, Danny Joel | es_ES |
dc.contributor.author | Hayami, K. | es_ES |
dc.date.accessioned | 2018-07-16T06:42:54Z | |
dc.date.available | 2018-07-16T06:42:54Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1017-1398 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/105807 | |
dc.description.abstract | [EN] In this paper, we analyze how to update incomplete Cholesky preconditioners to solve least squares problems using iterative methods when the set of linear relations is updated with some new information, a new variable is added or, contrarily, some information or variable is removed from the set. Our proposed method computes a low-rank update of the preconditioner using a bordering method which is inexpensive compared with the cost of computing a new preconditioner. Moreover, the numerical experiments presented show that this strategy gives, in many cases, a better preconditioner than other choices, including the computation of a new preconditioner from scratch or reusing an existing one. | es_ES |
dc.description.sponsorship | Partially supported by Spanish Grants MTM2014-58159-P and MTM2015-68805-REDT. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Numerical Algorithms | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Least squares problems | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Preconditioners | es_ES |
dc.subject | Low-rank updates | es_ES |
dc.subject | Sparse matrices | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Updating preconditioners for modified least squares problems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11075-017-0315-z | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-68805-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-58159-P/ES/PRECONDICIONADORES PARA SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE MINIMOS CUADRADOS, CALCULO DE VALORES PROPIOS Y APLICACIONES TECNOLOGICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Marín Mateos-Aparicio, J.; Mas Marí, J.; Guerrero-Flores, DJ.; Hayami, K. (2017). Updating preconditioners for modified least squares problems. Numerical Algorithms. 75(2):491-508. https://doi.org/10.1007/s11075-017-0315-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11075-017-0315-z | es_ES |
dc.description.upvformatpinicio | 491 | es_ES |
dc.description.upvformatpfin | 508 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 75 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\339790 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Alexander, S.T., Pan, C.T., Plemmons, R.J.: Analysis of a recursive least squares hyperbolic rotation algorithm for signal processing. Linear Algebra Appl. 98, 3–40 (1988) | es_ES |
dc.description.references | Andrew, R., Dingle, N.: Implementing QR factorization updating algorithms on GPUs. Parallel Comput. 40(7), 161–172 (2014). doi: 10.1016/j.parco.2014.03.003 . http://www.sciencedirect.com/science/article/pii/S0167819114000337 . 7th Workshop on Parallel Matrix Algorithms and Applications | es_ES |
dc.description.references | Benzi, M., T˚uma, M.: A robust incomplete factorization preconditioner for positive definite matrices. Numer. Linear Algebra Appl. 10(5-6), 385–400 (2003) | es_ES |
dc.description.references | Benzi, M., Szyld, D.B., Van Duin, A.: Orderings for incomplete factorization preconditioning of nonsymmetric problems. SIAM J. Sci. Comput. 20(5), 1652–1670 (1999) | es_ES |
dc.description.references | Björck, Å.: Numerical methods for Least Squares Problems. SIAM, Philadelphia (1996) | es_ES |
dc.description.references | Bru, R., Marín, J., Mas, J., T˚uma, M.: Preconditioned iterative methods for solving linear least squares problems. SIAM J. Sci. Comput. 36(4), A2002–A2022 (2014) | es_ES |
dc.description.references | Cerdán, J., Marín, J., Mas, J.: Low-rank upyears of balanced incomplete factorization preconditioners. Numer. Algorithms. doi: 10.1007/s11075-016-0151-6 (2016) | es_ES |
dc.description.references | Chambers, J.M.: Regression updating. J. Amer. Statist. Assoc. 66, 744–748 (1971) | es_ES |
dc.description.references | Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM trans. Math. Software 38(1), 1–25 (2011) | es_ES |
dc.description.references | Davis, T.A., Hager, W.W.: Modifying a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 20, 606–627 (1999) | es_ES |
dc.description.references | Davis, T.A., Hager, W.W.: Multiple-rank modifications of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 22, 997–1013 (2001) | es_ES |
dc.description.references | Davis, T.A., Hager, W.W.: Row modification of a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 26, 621–639 (2005) | es_ES |
dc.description.references | Hammarling, S., Lucas, C.: Updating the QR factorization and the least squares problem. Tech. rep., The University of Manchester, http://www.manchester.ac.uk/mims/eprints (2008) | es_ES |
dc.description.references | Olsson, O., Ivarsson, T.: Using the QR factorization to swiftly upyear least squares problems. Thesis report, Centre for Mathematical Sciences. The Faculty of Engineering at Lund University LTH (2014) | es_ES |
dc.description.references | Pothen, A., Fan, C.J.: Computing the block triangular form of a sparse matrix. ACM Trans. Math. Software 16, 303–324 (1990) | es_ES |
dc.description.references | Saad, Y.: ILUT: A dual threshold incomplete LU factorization. Numer. Linear Algebra Appl. 1(4), 387–402 (1994) | es_ES |
dc.description.references | Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Co., Boston (1996) | es_ES |